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a b s t r a c t

Carbon monoxide (CO) is an important gas that affects human health and causes air pollution. However,
the estimates of CO emissions in China are still subject to large uncertainties. Based on the CO mass
concentration and the coupled Weather Research and Forecast (WRF) and Stochastic Time-Inverted
Lagrangian Transport (STILT) model (WRF-STILT), this study estimates the CO emissions over Zhengz-
hou, China. The results show that the mean CO mass concentration was 1.17 mg m�3 from November
2017 to February 2018, with a clear diurnal variation. There were two periods of rapidly increasing CO
concentration in the diurnal variation, which are 06:00e09:00 and 16:00e20:00 local time. The foot-
print analysis shows that the observation site is highly influenced by local emissions. The most influential
regions to the site observations are northeast and northwest Zhengzhou, which are associated with the
geographical barrier of the Taihang Mountains in the north and narrow Fenwei Plain in the west. The
inversion result shows that the actual emissions are lower than the inventory estimates. Using the
optimal scaling factors, the WRF-STILT simulations of CO concentration agree closely with the CO
measurements with the linear fitting regression equation y ¼ 0.87x þ 0.15. The slopes of the linear fitting
regressions between the WRF-STILT-simulated CO concentrations determined using the optimal emis-
sions and the observations range from 0.72 to 0.89 for four months, and all the fitting results passed the
significance test (P < 0.001). These results indicate that the new optimal emissions derived with the
scaling factors could better represent the real emission conditions than the a priori emissions if the WRF-
STILT model is assumed to be reliable.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon monoxide (CO) is a major pollutant in the troposphere
and an important gas in the global carbon cycle (Holloway et al.,
2000; Li and Liu, 2011; Streets et al., 2006). CO is a colourless,
odourless gas with a long life cycle of approximately 2e3 months
(Liu et al., 2019a,b; Stocker et al., 2013). In general, exposure to an
environment with a CO concentration of 10 ppm or higher can
reduce the oxygen transmission of human cells and can endanger
life (Liu et al., 2018a; Singh et al., 2016; Townsend and Maynard,
2002; Vandyck et al., 2018; WHO, 1999). Moreover, CO plays a
central role in atmospheric chemistry by acting as the largest sink
of hydroxyl radicals and by being involved in the production of
ozone (Choi et al., 2017; Petetin et al., 2018).
CO is one of the main air pollutants in China (Kang et al., 2019; Li

and Liu, 2011; Wang et al., 2018). The production of CO is mainly
from natural sources and anthropogenic sources, such as the
oxidation of methane in the atmosphere, incomplete combustion of
carbon fuels, and emissions from the ocean (Hern�andez-Paniagua
et al., 2018; Jiang et al., 2015a; Jiang et al., 2015b; WHO, 1999). In
large cities, themain sources of CO are industry, transportation, and
boiler heating (Che et al., 2016; Marey et al., 2015; Yue et al., 2018).
Note that the increase in CO can promote the production of CO2 and
ozone (Feng et al., 2020; Girach et al., 2017). CO is generally stable in
air, and its diffusion and migration are mainly controlled by the
wind and can be transported over long distances by the airflow
(Garrett et al., 2010; Dekker et al., 2017; Dekker et al., 2019; Jiang
et al., 2017; Khan et al., 2017).

Compared to the number of studies on other air pollutants, there
have been relatively few studies (Liu et al., 2019b; Pal et al., 2017;
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Yin et al., 2015) on CO worldwide, especially in China. Previous CO
studies have mainly focused on statistical analyses of the spatial
and temporal distributions of various air pollutants including CO
using ground monitoring data, remote sensing data or emission
inventory products (Kang et al., 2019; Saikawa et al., 2017; Sun
et al., 2018; Yue et al., 2018; Zheng et al., 2014). In terms of pre-
dicting CO concentration from models, existing studies (Dekker
et al., 2017; Jiang et al., 2015a; Zheng et al., 2014) generally derive
it based on air quality models along with an a priori emission map.
However, a priori emission information is generally obtained from
emission inventories, which have limited time resolution and large
uncertainties due to various influential factors, such as differences
in air pollutant emission coefficients and complex sources of
pollution emissions (Hassler et al., 2016; Saikawa et al., 2017;
Streets et al., 2006). At the same time, the lack of long-term and
continuous ground observations increases the difficulty of assess-
ing inventory model performance (Hu et al., 2019; Jeong et al.,
2012a; Zhao et al., 2009).

Using ground site observations and inversion simulation, this
study provides an independent method to quantify CO emissions.
To date, the use of the Stochastic Time-Inverted Lagrangian Trans-
port (STILT) model to track the transport of particles in the atmo-
sphere has been successfully andwidely applied (Hu et al., 2018; Hu
et al., 2019; Jeong et al., 2012a; Mallia et al., 2015; Nehrkorn et al.,
2010; Zhao et al., 2009). In the United States, California has the
strongest greenhouse gas emissions among all states, and the STILT
model is often used to track pollution and greenhouse gas emis-
sions there (Brophy et al., 2019; Cui et al., 2019; Jeong et al.,
2012a,b; Zhao et al., 2009). Existing researches suggest that an at-
mospheric inversion model requires a sufficient amount of CO
concentration data, an a priori CO emission map, footprint data for
CO predictions, and meteorology data for driving the transport
model (Jeong et al., 2016; Lin et al., 2003; Zhao et al., 2009).

Central China is one of the heavily air-polluted areas in China
(Liu et al., 2019b; Zheng et al., 2018). One goal of the government is
to reduce the rapid growth of CO in autumn and winter to improve
air quality. Tomeet this goal, we need to clearly know the emissions
of CO over different regions. In this paper, we use the Weather
Research and Forecast (WRF) coupled with the STILT model (WRF-
STILT) and site CO concentration measurements to estimate the CO
emissions in Zhengzhou and the surrounding areas. TheWRF-STILT
model provides both accurate meteorological field simulations
from WRF and convenient footprint simulations from STILT (Lin
et al., 2003; Nehrkorn et al., 2010; Zhao et al., 2009), which are
suitable for studying the physical transport mechanism and diffu-
sion effect of CO. With the footprints from WRF-STILT, we then use
the least square inversion technique to obtain the scaling factors for
optimal emission estimation. After obtaining optimal emission in-
formation, we conduct an evaluation test by comparing the CO
concentration from the ground observations and that from the new
emission-based model predictions.

2. Data and method

2.1. Study area

Fig. 1 shows the location of our study area, including Zhengzhou
and its surrounding area. Zhengzhou is the capital of Henan Prov-
ince and a major industrial city in central China, with a population
of more than 10 million. It is located from the intersection of the
middle and lower reaches of the Yellow River to the Huanghuai
Plain. As shown in Fig. 1, the terrain is high in the west (over
1000 m), low in the east (roughly between 100 m and 300 m), and
the Taihang Mountains are in the north of this area. This terrain
affects the transport of air pollutants (Liu et al., 2018a,b;Wang et al.,
2018). As of 2018, Zhengzhou has jurisdiction over six municipal
districts, one county and five county-level cities, with a total area of
7446 square kilometres, a built-up area of 830.97 square kilo-
metres, and a total population of 10.13 million. The total production
value is 1014.33 billion yuan (CSY, 2018). Zhengzhou is the central
city of the Central Plains urban agglomeration. In recent years, with
rapid economic development and large-scale air pollution, the
environment in Zhengzhou and its surrounding areas has been
greatly affected (Liu et al., 2018b). CO is a common polluted gas in
the region, especially in autumn and winter; this CO not only de-
stroys the natural environment but also causes great harm to hu-
man health. A quantitative assessment of CO concentration and CO
emissions over this area is necessary. We divide the Zhengzhou
area into 10 sub-regions, as shown in Fig. 5, based on the spatial
distribution of the a priori CO emissions, although the region
classification is somehow subjective. These 10 sub-regions are used
in the following analysis.

2.2. Measurements

The CO concentration measurements were obtained for the
period from November 1, 2017, to February 28, 2018, at a site
located in the centre of Zhengzhou (latitude and longitude of
34.75� N and 113.60� E), as shown by the star in Fig. 1. The site
observations are operated by the Ministry of Ecology and Envi-
ronment of the People’s Republic of China, which are released on
the website (http://www.mee.gov.cn/) of the China Ministry of
Ecology and Environment (MEE) in real-time.

The CO sensor was a 48i CO analyser from Thermo Fisher Sci-
entific (USA). The important parameters are as follows: the custom
range is 0.1e10,000 (ppm or mg/m3), the zero noise is 0.02 ppm
RMS (30 s averaging time), the lower detectable limit is 0.04 ppm,
the zero drift (24 h) is < 0.1 ppm, the sample flow rate is 1 L/min,
the response time is 60 s (30 s average time), the span drift is ±1%
full scale, and the linearity is ±1% full scale (https://www.
thermofisher.com/order/catalog/product/48I#/48I). The MEE has
established strict standards to ensure the data quality, such as
maintaining the zero noise �0.25 ppm, zero drift within ±0.1 ppm,
the lower detectable limit �0.05 ppm, the indication error within
±2%, the response time�4min, and the range precision�0.05 ppm.
When these conditions are met and the sampling time is at least
45 min per hour, MEE calculates and provides hourly data. By
choosing the observation period from November 1, 2017, to
February 28, 2018, we focus on the estimation of CO emissions in
Zhengzhou during winter. Note that the original hourly CO mass
concentration data with a quality flag of “good” are used in this
study. The quality check was performed by the MEE, and a “good”
flag was given when there were no missing data, when no outliers
appeared, and when no instrument error occurred.

2.3. The a priori CO emission map

In this study, the monthly a priori CO emission map (F) is ob-
tained from the Multiresolution Emission Inventory for China
(MEIC) developed by Tsinghua University. The MEIC includes a set
of anthropogenic emissions inventory models for air pollutants and
greenhouse gases developed in China based on cloud computing
platforms. It is more suitable for investigating China’s energy sta-
tistics than other emission inventories are and is able to demon-
strate CO emission changes month by month (Fan et al., 2018),
which is beneficial for the a priori emission map in this study. The
spatial resolution for the CO emission map is 0.25 � � 0.25 �. A
detailed description of the MEIC can be found on the official web-
site (http://www.meicmodel.org) and in previous studies (Li et al.,
2014; Liu et al., 2015; Zhang et al., 2009; Zheng et al., 2014) and
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Fig. 1. Location of the study area. The site is marked with a star.

Fig. 2. The diagram of how upstream air pollution and local emissions influence the
corresponding air pollutant measurements at the observation location (receptor).
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is not repeated here.

2.4. WRF-STILT model

The WRF-STILT model is widely used for the study of the
transport of atmospheric gases, including both polluted gases and
greenhouse gases. As an atmospheric backward transport model, it
can directly obtain the contribution rate of emissions over different
regions in the study area from themeasurements at a fixed location
based on the simulated footprint (Cusworth et al., 2018; Wen et al.,
2012;Wu et al., 2018). The first novelty of this coupledmodel is that
it reduces the transport error in the top-down greenhouse gas flux
estimation at the continental scale, specializing in regional emis-
sion simulation and flux inversion of greenhouse gases (Nehrkorn
et al., 2010; Zhao et al., 2009). The details of the WRF-STILT
model have been described in previous studies (Lin et al., 2003;
Nehrkorn et al., 2010). Here, we only describe the features and
settings most relevant to this study.

The initial and boundary meteorological conditions for the WRF
are set up based on the National Centre for Environmental Pre-
diction final analysis data. The simulation domain is
900 km � 900 km, with a horizontal resolution of 3 km. Similar to
our previous model setup (Zhao et al., 2009; Zhao et al., 2019), the
main physical modules of the WRF operation are set as follows. The
longwave radiation uses the Rapid Radiation Transfer Model
scheme, and the shortwave radiation uses the Goddard radiation
transfer model scheme; the boundary layer uses the Yonsei Uni-
versity scheme; the microphysical module uses the Purdue Lin
module; and the convection uses the Grell-Devenyi ensemble mass
flux scheme. For the STILT setup, a release height of 10 m at the
observation station is used to represent the receptor location of CO
measurements in the study area. As a national environment station,
there are no local CO emission sources nearby within approxi-
mately 0.5 km. Thus, the CO concentration at the receptor location
is weakly subject to local enhancement by nearby sources that are
not represented in the WRF-STILT modelling. For the STILT simu-
lations, 1000 particles are released and transported backward for
up to 3 days with a temporal resolution of 1 h. Simply, the WRF
simulations provide the hourly meteorology, which further drives
the STILT simulation to obtain the particle trajectory and footprint
(f) within the study region. Similar to the spatial resolution set by
WRF-STILT, the spatial resolution for the footprints is 3 km � 3 km.
After obtaining the footprints, we calculate the model simulated CO
mass concentration contributed from local emissions by multi-
plying a footprint by the corresponding a priori emission map (F)
using the same method as discussed by Zhao et al. (2009),

ClðXr; trÞ¼
X
i;j;m

f
�
Xr ; tr

���xi; yj; tm
�
,F

�
xi; yj

�
(1)

where Xr and tr represent the position and time of the CO mea-
surement at the receptor location, respectively, f ðXr ; tr

���xi; yj; tmÞ is
the footprint, and Fðxi; yjÞ is the surface-emission map at position
(xi;yj) and time tm.

Fig. 2 provides a diagram describing how upstream air pollution
and local emissions influence the corresponding air pollutant
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measurements at the observation location (receptor). The transport
process of an air parcel (or particles) includes two physical pro-
cesses, advection and turbulence. The turbulence causes the
dispersion of the air parcel (or particles) and promotes the ex-
change of gases or particles with the emissions from the surface. In
principle, the observation gas concentration, such as the CO con-
centration, at the receptor location is a sum of the transported gas
from upstream and the gas exchanged from the local surface
emissions. Thus, the CO concentration at the receptor location can
be calculated using the following equation:

CðXr; trÞ¼ClðXr; trÞ þ CBGðXr ; trÞ (2)

where C is the CO concentration at the receptor location, Cl is the CO
concentration contributed from the exchange with the local surface
emissions along the transport path, and CBG is the CO concentration
of the upstream atmosphere. Considering the much weaker foot-
prints at farther locations, the very small CO concentration from the
natural background, and the relatively long period (three days) of
the backward trajectories, we simply assume the CBG as a negligible
component in our study. Note that if CBG is non-zero, then the
estimated enhancements (C-CBG) will be lower and additional un-
certainties could be introduced; however, we expect CBG to be
weak, as argued above. Eq. (2) is the basis for the derivation of the
CO concentration at the receptor location from the WRF-STILT
model.
2.5. Inversion technique

Fig. S1 shows the framework of how we retrieve the local
emissions based on the WRF-STILT simulations and the site ob-
servations of CO concentration. In principle, the inversion algo-
rithm is an optimal process: it estimates optimal emission scaling
factors for the emissions in different sub-regions to make theWRF-
STILT-based model calculations (section 2.4) closely match the site
observations. In this study, we use the standard least-squares
optimization method to estimate the overall scaling factor of each
sub-region month by month.

Combining Eqs. (1) and (2), we can obtain

C¼ fF þ CBG (3)

where f is the footprint, F is the surface-emission map of CO, and C
and CBG are the CO mixing ratios at the receptor location and up-
stream location (background), respectively. Similar to Zhao et al.
(2009), we introduce l as scaling factors to the a priori emissions
over all sub-regions within the study area, which is obtained from
the optimal inversion process by comparing the model simulations
and site observations. Unlike the approach used by Zhao et al.
(2009), the standard least-squares optimization method is used
to obtain the l values:

minfabsðCobs � fflÞg (4)

where F refers specifically to the a priori emissions from different
sub-regions and Cobs refers to the observed CO concentration. After
obtaining the optimal l values, new surface emissions F (l) can be
obtained based on the multiplication of the a priori emissions over
different sub-regions by its corresponding l values:

FðlÞ¼Fl (5)

We briefly summarize our analysis method shown in Fig. S1. We
first derive reliable meteorology data from the WRF simulations.
Second, we use the meteorology data to drive the STILT simulations
and obtain the backward trajectories and footprints over the study
area. Third, based on the a priori CO emissions over the study area,
we calculate the simulated CO concentration at the receptor
(measurement) location. Fourth, we compare the simulated and
measured CO concentrations and derive the scaling factors for CO
emissions over selected sub-regions based on the standard least-
squares optimization method. Fifth, after determining the scaling
factors, we obtain the new optimal CO emission maps, run the
models again to obtain new simulation results of CO concentration
at the receptor location for other independent times, and evaluate
their performance using CO measurements at those independent
times.

Notably, large potential errors could exist due to the un-
certainties in the meteorological variables such as the wind and
planetary boundary layer, the transport model, and the a priori
emission maps, as indicated by Zhao et al. (2009) in a CH4 emission
study. However, the purpose of this study is to provide a first es-
timate of CH4 emissions with the constraint of CO concentration
measurements over the Zhengzhou area, which can provide useful
information for future research and air quality control policy
making.

3. Results and discussion

3.1. Characteristics of CO observations

Fig. 3 shows the hourly (Fig. 3a) andmonthly (Fig. 3b) variations
in CO mass concentration along with its diurnal variation (Fig. 3c)
from November 2017 to February 2018 measured at the Zhengzhou
site. As shown in Fig. 3a, the CO concentration varies between 0 and
4mgm�3 during the study period, peaking on January 20, 2018. The
hourly variations in CO concentration are relatively weaker in
November 2017 and February 2018 than in December 2017 and
January 2018. By averaging the hourly CO concentration in each
month (Fig. 3b), the maximum monthly CO concentration also
peaks in January 2018 at a value of 1.27 mg m�3. In contrast, the
minimum monthly average CO concentration was in November
2017, which could be related to winter heating from November 15
until the 15th of the next March.

Fig. 3c shows the diurnal variation in the four-month averaged
CO concentration. There is a clear diurnal variation in CO concen-
tration in Zhengzhou in thewinter of 2017, which is consistent with
previous studies (Amorim et al., 2016; Hern�andez-Paniagua et al.,
2018). There are two periods of rapidly increasing CO concentra-
tion in Zhengzhou, which are from 06:00 to 09:00 and from 16:00
to 20:00. This should be mainly due to the exhaust emissions from
motor vehicles duringmorning and evening traffic peaks in the city.
In contrast, there is a period of rapidly decreasing CO concentration
from 9:00 to 16:00, which should be mainly due to the increasing
planetary boundary layer (PBL) height. The weak change in CO
concentration at night is likely associated with low emissions and
relatively stable PBL height (Gratsea et al., 2017; Han et al., 2018;
Hern�andez-Paniagua et al., 2018).

3.2. Footprints

Fig. 4 shows the average footprint map over the Zhengzhou area
obtained from the WRF-STILT simulations, which represent the
influencing factor of surface emissions on the measurement site
(receptor) location. The footprint map shows a distinct spatial
distribution, with large values in the northeast and northwest
representingmore contributions from those areas. This distribution
is closely related to the geographical location of the study area and
the wind characteristics in winter over the Zhengzhou area. As
indicated by previous studies (Liu et al., 2018b; Wang et al., 2018),
the wind in Zhengzhou is mainly from the north in winter.



Fig. 4. The average footprints of November 2017 to February 2018. ‘‘x’’ denotes the
receptor location. The purple box approximately represents the Zhengzhou city area,
and the green box indicates the Zhengzhou city centre. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 5. The division of 10 sub-regions in the Zhengzhou study area along with the
optimal scaling factors (green bars) over the 10 sub-regions from the inverse based on
CO measurements from November 2017 to February 2018. The blue colour bars
represent the a priori scaling factors, which are set to 1.0 for all the sub-regions. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 3. The hourly (a) and monthly (b) variations in CO concentration along with its
diurnal variation (c) measured at the site. The error bars in (b) and (c) represent the
standard deviation.
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Moreover, Fig. 1 shows that the Taihang Mountains, low North
China Plain, and narrow Fenwei Plain are in the northern, eastern/
northeastern, and western parts of Zhengzhou, respectively. This
topography promotes the transport of air pollutants from the
northeast and northwest. Considering the heavily polluted areas of
North China in the northeast of Zhengzhou and the Fenwei Plain in
the western part of Zhengzhou, the air quality over Zhengzhou
could be highly influenced by emissions from the northeast and
northwest. In addition, air pollutant emissions are also significant
over the southern part of Zhengzhou, which is a plain area with a
high population. In short, the pollution contribution from emis-
sions over the surrounding regions, such as the northeast and
northwest study area, may not be ignored, while the footprints
there seem very low compared to Zhengzhou area, as shown in
Fig. 4.

As indicated in Zhao et al. (2009), the footprints indicate the
influence factor of unit emission at each region on the CO con-
centration measurements at the observation (receptor) site loca-
tion. The green box in Fig. 4 represents the built-up area of
Zhengzhou city centre, and the purple box represents Zhengzhou
and its surrounding county areas. Fig. S2 further shows the spatial
distribution of land use in Zhengzhou in 2018, from which we can
see that the urban area over Zhengzhou is the area with high
footprints, as shown in Fig. 4, with the exception of the south-
western mountain region. Thus, the contributions to CO measure-
ments at the observation site from the local emissions should be
more significant than those from transport from outside the
Zhengzhou area. Considering that the topography over Zhengzhou
is relatively flat with high footprints, it is key to control the local
emissions to improve the air quality in Zhengzhou (Fan et al., 2018;
Kang et al., 2019; Liu et al., 2019b; Zhao et al., 2019). We next derive
the optimal emissions from the site observations of CO concen-
tration and the footprints from the WRF-STILT simulations.
3.3. Inversion analysis

Overall, Fig. 5 shows that the scaling factors for the optimal
emissions are on average lower than 1.0, indicating that the CO
emission amount is less than the inventory values for most sub-



Fig. 7. The box plots of monthly CO concentrations from the observations, WRF-STILT
simulations based on the a priori emissions, and WRF-STILT simulations based on the
optimal emissions. The box indicates the median, upper and lower quantiles. In the box
plot, an open square represent a mean, and the up and down triangles represent the
maximum and minimum values, respectively. The whisker represents the 5%e95%
range of the data.
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regions. Particularly, the scaling factors for sub-regions 5, 6, 7, 9,
and 10 are relatively low, with values of 0.87, 0.53, 0.85, 0.75 and
0.90, respectively, suggesting that the optimal emissions are less
than the inventory emissions from the MEIC in these five regions.
Note that the footprints are most distinct in these five regions, as
shown in Fig. 4, suggesting that the inverse values in these five
regions are generally more reliable than in other regions (Zhao
et al., 2009). In contrast, the scaling factors in sub-regions 1 and 4
are 1.07 and 1.12, respectively, which are slightly larger than 1,
indicating that the posterior/optimal emissions are likely slightly
greater than the a priori estimations. For regions 2, 3, and 8, the
scaling factors are closer to 1, which either suggests that the a priori
CO emissions are reasonable or suggests the low sensitivity (foot-
prints) of the CO observations at the measurement site to the
emissions at these regions. While not provided in Fig. 5, the abso-
lute CO emission amounts from regions 1e10 of the a priori emis-
sion map are 5.86, 0.87, 1.19, 3.06, 0.67, 0.79, 0.32, 0.15, 0.11, and
0.13 Mt/year, respectively.

As shown in Fig. 6a, the best-fitting linear regression equation
between the WRF-STILT simulations of CO concentration (y) using
the a priori emissions and the CO measurements (x) is
y ¼ 0.45x þ 0.92 with a coefficient of determination of only 0.07,
suggesting large uncertainties in the a priori emissions. Using the
optimal scaling factors, the WRF-STIT simulations of CO concen-
tration agree more closely with the CO measurements with the
linear fitting regression equation y ¼ 0.87x þ 0.15 and the coeffi-
cient of determination of 0.48, which are shown in Fig. 6b. The
results shown in Fig. 6 indicate that the new optimal emissions
derived with the scaling factors could better represent the real
emission conditions than the a priori emissions if the WRF-STILT
model is assumed to be reliable.

We further performed inverse analyses on a monthly basis. Two
observations can be clearly made from Fig. 7. First, the monthly
average CO concentration from theWRF-STILT simulations with the
optimal emissions agrees more closely with the observations than
that from the WRF-STILT simulations with the a priori emissions.
Second, the major ranges from the lower quartile or lower 5% to the
upper quartile or upper 95% for the monthly CO concentrations
Fig. 6. Comparison of CO concentration between the measurements and predi
from the WRF-STILT simulations with the optimal emissions also
agreemore closely with the observations than those from theWRF-
STILT simulations with the a priori emissions. Particularly, the
agreement of the CO concentrations between the WRF-STILT sim-
ulations and site observations in December and January consid-
ering the optimal emissions are significantly improved over those
considering the a priori emissions. In addition, it is clear that the
diurnal variation in CO concentrations from the WRF-STILT simu-
lations using the optimal emissions agrees more closely with the
observations than that from the WRF-STILT simulations using the a
priori emissions (Fig. 8). In principle, the WRF-STILT-simulated CO
concentration using the a priori emissions hardly captures the
increasing trend from 07:00 to 10:00 and the decreasing trend from
10:00 to 17:00, while the WRF-STILT-simulated CO concentration
determined using the optimal emissions can.
ctions modified using scaling factors obtained from the inversion analysis.



Fig. 8. Diurnal variations in CO concentrations from measurements (grey), WRF-STILT
simulations based on the a priori emissions (blue), and WRF-STILT simulations based
on the optimal emissions (orange). Circles represent the mean values, and the error
bars represent the standard errors. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Fig. 9. Comparison of CO concentration between the measurements and predictions modifi
and (d) represent November 2017, December 2017, January 2018, and February 2018, respe
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We confirmed that the WRF-STILT-simulated CO concentrations
determined using the optimal emissions agree more closely with
the observations than those using the a priori emission for each
month, also implying the high reliability of the new optimal CO
emissions (Fig. 9). The slopes of the linear fitting regressions be-
tween the WRF-STILT-simulated CO concentrations determined
using the optimal emissions and the observations range from 0.72
to 0.89 for four months, and all the fitting results passed the sig-
nificance test (P < 0.001). All the results shown in Figs. 6e9 indicate
that the inverse optimization method we used can significantly
improve the estimates of CO emissions and make the predicted CO
signals more consistent with the measured CO signals.

We then used the data from November 2017 to January 2018 to
obtain the scaling factors and then used the scaling factors to
optimize the inventory emissions for February 2018, based on
which we conducted an independent evaluation study by
comparing the WRF-STILT simulations and measurements of CO
concentration in February 2018. As shown in Table S1, the WRF-
STILT-simulated CO concentrations determined using the optimal
emissions are much closer to the measurements in terms of both
themean and standard deviation compared to those from theWRF-
STILT simulations using the a priori emissions. Simultaneously,
compared to the WRF-STILT-simulated CO concentrations deter-
mined using the a priori emissions, the WRF-STILT-simulated CO
ed using the monthly scaling factors obtained from the inversion analysis. (a), (b), (c),
ctively.
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concentrations determined using the optimal emissions agree
more closely with the CO measurements, with a linear fitting
regression equation of y ¼ 0.84x þ 0.11 and an R2 of 0.46
(P < 0.001). This independent evaluation analysis further ensures
the reliability of CO emission estimates from the optimal inversion
study.

4. Conclusion

This study found that the CO concentration at Zhengzhou shows
clear hourly and monthly variations in winter, along with signifi-
cant diurnal variations. The temporal and diurnal variations in CO
concentration are highly related to the local emissions, such as the
heavier emissions in the heating season from November 15 to
March 15, while the transport of air pollutants from northeast and
northwest Zhengzhou also contributes.

An inverse algorithm is developed to estimate the optimal CO
emissions over 10 classified sub-regions. We first performed the
analysis for the whole study period. The optimal scaling factors are
clearly less than 1.0 for the central four regions, implying that the a
priori inventory CO emissions could have been overestimated.
Further comparison indicated that the WRF-STILT-simulated CO
concentrations determined using the optimal emissions agree
more closely with the observations than the WRF-STILT-simulated
CO concentrations determined using the a priori emissions. When
we applied the inverse algorithm to the CO concentration mea-
surements from every month, the results showed a stronger
agreement of the CO concentrations between the WRF-STILT-
simulated CO concentrations determined simulations using the
optimal emissions and the measurements than that between the
WRF-STILT-simulated CO concentrations determined simulations
using the a priori emissions and the measurements for all the
months. Therefore, one implication of our study is that the inverse
optimization method can significantly improve estimates of CO
emissions and make the predicted CO signals more consistent with
the measured ones. This study provides the community with an
efficientmethod to derive optimal emission information for various
air pollutants.
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