
Journal of Molecular Liquids 392 (2023) 123345

Available online 13 October 2023
0167-7322/© 2023 Elsevier B.V. All rights reserved.

A general approach based on morphological thermodynamics for a fluid 
confined in various porous media 

C.Z. Qiao a,1, H.R. Jiang a,b,1, S.L. Zhao a,c,*, W. Dong b,* 

a State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China 
b Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, CNRS, UMR 5182, 46, Allée d’Italie, 69364 Lyon Cedex 07, France 
c Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi 
University, Nanning 530004, China  

A B S T R A C T   

We propose a general approach based on morphological thermodynamics for determining adsorption isotherms, i.e., the chemical potential of a confined fluid as a 
function of its density. The validity of this approach and its versatility are established by its remarkable accuracy compared to Monte-Carlo simulation results and its 
capability of accounting for a quite large variety of porous media, ranging from a simple slit pore to a random sponge matrix. It is also revealed that the contribution 
of the curvature terms to the chemical potential of the confined fluid is negligibly small when the interface curvature is not too large. This finding is of a particular 
importance for simplifying the treatment of experimental results of adsorption isotherms since no experimental technique is currently available for determining the 
curvatures of the pore surface inside a porous material.   

1. Introduction 

Porous materials are widely used in various domains, e.g., in chemical 
industry for molecular sieves and supported catalysts, in new clean energy 
technology for storing hydrogen, in some new therapy for long-lasting 
delivery of medicines by encapsulation. It is now well recognized that 
confinement can modify drastically some properties of adsorbed fluids. 
Accompanying the advent of many high-performance functionalized 
nanoporous materials, a large number of experimental and theoretical 
investigations have been made during the last decades. Nevertheless, a 
unifying picture highlighting the behavior of confined fluids emerges 
quite slowly due to the large diversity of structure and morphology for 
various porous materials. One salient characteristic of fluids confined in 
porous media is the large interface between fluid and pore wall, which has 
usually a complex morphology. Although one expects intuitively an 
important surface contribution to the thermodynamic potentials of such 
systems, it is not obvious whether it is still possible to define a meaningful 
surface tension when the characteristic pore size is of the order of a few 
molecular diameters of the confined fluid. Even if an approach based on 
thermodynamics is possible, one still needs to know which are the most 
relevant variables for characterizing the complex interface landscape of 
fluids adsorbed in porous media. The theoretical study of fluids confined 

in porous media is still carried out essentially in a case-by-case way. The 
morphological thermodynamics proposed and advocated by K. Mecke, R. 
Roth and co-workers [1–8] provides a framework for a general thermo
dynamic description of complex interfacial systems. Starting from Had
wiger’s theorem in integral geometry, morphological thermodynamics 
postulates that four geometrical measures are enough to characterize the 
thermodynamic potential of a complex interfacial system, i.e., volume, 
surface area, integrated mean curvature and integrated Gauss curvature 
[1]. Moreover, Mecke et al assume that the thermodynamic variables 
conjugated to these geometrical measures, i.e. pressure, surface tension, 
as well as two surface bending rigidities, can be determined for a simple 
system then be used to describe systems with more complex morphology 
[1–3]. Although morphological thermodynamics gives promising results 
for some systems [1–8], the validity of one of its fundamental postulates 
has been questioned. Theoretical and simulation investigations have 
provided evidence for the existence of non-Hadwiger terms, i.e., high- 
order curvature contributions to surface tension, which are not taken 
into account in the morphological thermodynamics [9–12]. Moreover, 
these investigations have shown that the first non-Hadwiger term gives a 
contribution much smaller than the Hadwiger terms, at least one order of 
magnitude smaller [9]. Hence, morphological thermodynamics can allow 
for formulating useful approximations in practice even when Hadwiger 
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theorem does not hold rigorously. Fluids adsorbed in porous materials 
with a complex morphology of pore space provide an interesting ground 
for further testing the applicability of morphological thermodynamics. 
This constitutes the main objective of the present work. Some of us (SLZ 
and WD) have collaborated during a long time with Myroslav Holovko in 
the study of fluids confined in porous media [13–17]. It is our great 
pleasure to dedicate the present article to this special issue for the 
eightieth anniversary of Professor Holovko. 

Our presentation is organized as follows. A brief introduction of 
morphological thermodynamics and a general equation of state for a 
fluid confined in various porous media will be presented in the next 
section. The accuracy of the general equation of state in different 
confining media will be assessed in Section 3. Some conclusions will be 
presented in the last section. 

2. Theory 

2.1. A brief recall of morphological thermodynamics 

The morphological thermodynamics proposed by Mecke, Roth and 
coworkers is based on the fundamental assumption that the grand po
tential of a complex interfacial system is a linear combination of four 
morphological measures, i.e., the system’s volume, V, the interface area, 
A, the integrated mean curvature, CM, and the integrated Gauss curva
tures, CG. From this assumption, one has immediately the following 
expression for the grand potential, 

Ω = − pbulk(T, μ)V + γ0(T, μ)A+ γ− 1(T, μ)CM + γ− 2(T, μ)CG (1)  

where T is temperature, μ the chemical potential. The coefficients of the 
morphological measures are respectively the pressure of the corre
sponding bulk system, pbulk, the surface tension on a flat surface, γ0, and 
the bending rigidities, γ− 1 and γ− 2 related to the integrated mean and 
Gauss curvatures. Before applying it to study fluids confined in porous 
media, it is useful to clarify further some implications of the morpho
logical thermodynamics given in Eq. (1). First, it is to note that the 
morphological measures are completely decoupled with the properties 
of the fluid, i.e., the four morphological measures being independent of 
the fluid state, i.e., T and μ. Such decoupling allows for separating the 
study of a complex interfacial system into two simpler tasks, one for 
determining the morphological measures in the absence of the fluid and 
the other for determining the coefficients, γ0, γ− 1 and γ− 2, from a simpler 
system, e.g., the considered fluid near a spherical surface. On the other 
hand, the independence of the morphological measures on the fluid state 
does not hold for fluid adsorption in very flexible porous materials since 
the adsorption can induces large deformation of the materials and 
modify significantly their morphology. So, the morphological thermo
dynamics as presented above cannot be applied for the fluid adsorption 
in flexible porous materials. We can also rewrite Eq. (1) as, 

Ω = Ωbulk + γ̂A (2)  

where 

γ̂ = γ0(T, μ)+ γ− 1(T, μ)
CM

A
+ γ− 2(T, μ)

CG

A
(3)  

Recently, one of us has shown that it is necessary to introduce the 
concepts of differential and integral surface tensions for strongly 
confined fluids, i.e., pore size being sufficiently small so that γ0, γ− 1 and 
γ− 2 in Eq. (3) can also depends on the pore size in addition of T and μ 
[18,19]. Although γ̂ defined from Eq. (2) is an integral surface tension, 
the assumption that γ0, γ− 1 and γ− 2 are only functions of temperature 
and chemical potential is too restrictive to account for more complex 
situations. Therefore, we can anticipate that the morphological ther
modynamics can become less and less accurate when confinement be
comes stronger and stronger. 

2.2. Adsorption isotherms based on morphological thermodynamics 

The morphological thermodynamics extends Gibbs surface thermo
dynamics by proposing a concrete recipe to account for the curvature 
contributions in the grand potential. It is straightforward to show that 
the surface tension given in Eq. (2) satisfies Gibbs adsorption equation, i. 
e., 
(

∂γ̂
∂μ

)

T
=

1
A

[(
∂Ω
∂μ

)

T
−

(
∂Ωbulk

∂μ

)

T

]

= −
N1 − Nb

A
= − Γ (4)  

where Γ is defined as adsorption, N1 and Nb are respectively the particle 
number of the confined fluid and that of the corresponding bulk fluid in 
the same volume with the same temperature and chemical potential. 
This equation provides a relation between the density of the confined 
fluid, ρ1 = N1V− 1, and that of the corresponding bulk fluid, ρb = NbV− 1, 

ρb = ρ1 +

(
∂γ̂
∂μ

)

T

A
V

(5)  

Now, from the equation of state of the bulk fluid and the relation given 
by Eq. (5), we obtain immediately the following equation of state for the 
confined fluid, 

μ(ρ1) = μbulk
[

ρ1 +

(
∂γ̂
∂μ

)

T

A
V

]

(6)  

3. Results and discussion 

The theoretical framework presented in the last section is a quite 
general one which can be applied for studying a large variety of confined 
fluids. We illustrate this by considering some benchmark model systems. 

3.1. A hard sphere fluid confined in a slit pore with hard walls 

We consider first a hard sphere (HS) fluid confined in a slit pore 
formed with two parallel hard walls. A schematic presentation of such a 
system is given in Fig. 1. The morphological thermodynamic approach 
described in Section 2.2 is based on two prerequisites: i) an equation of 
state for the bulk fluid; ii) the surface tension for the considered inter
face. For a HS fluid confined in a slit pore with two hard walls, scaled 
particle theory (SPT) [20–22] provides both the equation of state of the 
bulk fluid and the surface tension of a HS fluid near a flat hard wall. 

The SPT equation of state for a bulk HS fluid is given by, 

βμSPT = ln
(
Λ3ρb) − ln

(
1 − ηb)+

7ηb

1 − ηb +
15
2

(
ηb

1 − ηb

)2

+ 3
(

ηb

1 − ηb

)3

(7)  

Fig. 1. Schematic presentation of a fluid of hard spheres (blue spheres) 
confined in a slit pore with two walls (grey) separated by a distance of L 
(surface normal along the z-direction). The dashed lines mark the closest 
accessible plans for the hard-sphere centers, l = L − σ being the accessible 
width (σ: fluid hard sphere diameter). 
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where Λ is the thermal wavelength, β = (kBT)− 1 (kB: Boltzmann con
stant), ηb = πσ3ρb6− 1 is the packing fraction of the bulk fluid. The sur
face tension for a fluid-wall interface and the adsorption depend on the 
choice of Gibbs dividing surface. For the present work, we choose the 
wall surfaces located at z = ±L/2 as the dividing surfaces (see Fig. 1). 
For this choice, the SPT gives the following result for the surface tension, 

πσ2βγSPT
0 =

3ηb

1 − ηb +
9
2

(
ηb

1 − ηb

)2

(8)  

From the Gibbs adsorption equation, i.e., Eq. (4), and the results given in 
Eqs. (7) and (8), we obtain straightforwardly the adsorption on one pore 
wall, 

πσ2ΓSPT
0 = − πσ2

(
∂γSPT

0

∂μSPT

)

T
= − πσ2

(
∂γSPT

0

/
∂ηb
)

T

(∂μSPT/∂ηb)T
= −

3ηb(1 − ηb)

1 + 2ηb (9)  

Since the slit pore is composed of two hard walls, we have the following 
relation between the packing fraction of the confined fluid, η1 =

πσ3ρ16− 1, and that of the bulk one, 

η1 = ηb +
2πσ2ΓSPT

0

6L* = ηb −
ηb(1 − ηb)

L*(1 + 2ηb)
(10)  

where L* = Lσ− 1 is the pore width measured with the HS diameter. Since 
Eq. (10) is a second order polynomial, we obtain the following explicit 
expression of ηb in terms of η1, 

ηb =
1 − L* + 2L*η1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − L* + 2L*η1)
2
+ 4L*(1 + 2L*)η1

√

2(1 + 2L*)
(11)  

Now, the adsorption isotherm for a HS fluid confined in a slit pore is 
given by, 

βμ(η1) = βμbulk( ηb) (12)  

The right-hand-side of Eq. (12) is given by substituting Eq. (11) into Eq. 
(7). Eq. (10) shows clearly that with the increase of L*, the difference 
between η1 and ηb becomes smaller and smaller and lim

L*→∞
η1 = ηb, one 

recovers the bulk result from Eq. (12) for L*→∞ as one can expect. For 
point particle, i.e. σ = 0, Eqs. (7) and (12) gives the same exact result for 
the confined and the bulk ideal gas as we expect. 

In Fig. 2, some results given by Eq. (12) are presented for a few pore 
widths and compared to the results of Monte-Carlo (MC) simulations. 
Since the adsorption for this system is negative, the adsorption isotherms 
of the confined fluid are always above the isotherm of the bulk fluid. As 
the surface contribution decreases when the pore width becomes larger, 
the isotherm of the confined fluid approaches more and more the 
isotherm of the bulk fluid. The agreement between the results of 
morphological thermodynamics and those of the MC simulations is very 
good for L* ≥ 3.5. 

Fig. 3 shows the results for some narrower pores, L* ≤ 3.0. Up to the 
moderate fluid density, i.e., ρ1σ3 ≤ 0.6, morphological thermodynamics 
gives accurate results. For higher densities, the results of morphological 
thermodynamics deviate more and more from those of the MC simula
tions. For very narrow pores, a disjoining pressure [23,24] arises in the 
confined fluid. One of us (WD) has shown that due to the contribution of 
the disjoining pressure, the surface tension for very narrow pores is no 
longer equal to that for the fluid near one single wall [18]. However, the 
contribution of the disjoining pressure is not accounted for by the 
morphological thermodynamics. We believe this is the main reason for 
the failure of morphological thermodynamics in describing accurately 
the strongly confined fluids at high densities in very narrow slit pores. 

Slit pore is a model extensively used for studying confined fluids. 
Many simulations have been carried out for fluids confined in a slit pore. 
Labik and Smith reported NVT-ensemble Monte Carlo simulation results 

for hard spheres in a hard slit pore [25] and our simulation results are in 
good agreement with theirs. Smith and coworkers [26] and Alejandre et 
al [27] have used integral equations to study a hard sphere fluid in a slit 
pore. Many investigations on a variety of fluids confined in a slit pore 
have been made with the help of density functional theory (DFT) and 
many of them aim at determining the fluid distribution inside the pore 
(see e.g., [28], an exhaustive review is beyond the scope of the present 
article). The theoretical approaches based on DFT or integral equations 
requires first determining the one- and two-body distribution functions. 
Our approach in this work focuses only on the thermodynamic proper
ties, which requires only the equation of state of the considered fluid in 
the bulk phase and the surface tension for the considered interface. 
When SPT is used for these properties, we obtain a totally analytical 
result for the adsorption isotherms of a hard sphere fluid confined in a 
slit pore. 

Fig. 2. Chemical potential of a hard sphere fluid confined in a slit pore as a 
function of fluid density from morphological thermodynamics, i.e., Eq. (12) 
(continuous line) and NVT-ensemble Monte-Carlo simulations (symbols, see 
Appendix B for the details about simulation method and computation condi
tions). 1) L* = 3.5 (red); 2) L* = 5.0 (blue); 3) L* = 7.5 (yellow); 4) L*→ 
∞ (black). 

Fig. 3. Chemical potential of a hard sphere fluid confined in a narrow slit pore 
as a function of fluid density from morphological thermodynamics, i.e., eq. (12) 
(continuous line) and NVT-ensemble Monte-Carlo simulations (symbols, see 
Appendix B for the details about simulation method and computation condi
tions). 1) L* = 2.5 (purple); 2) L* = 3.0 (green); 3) L*→∞ (black). 
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3.2. A hard sphere fluid confined in an ordered or a disordered hard 
sphere matrix 

The porous matrix model with quenched matrix particles proposed 
by Madden and Glandt [29] accounts for more characteristics of porous 
media than the simple slit pore model, e.g., pore connectivity, curved 
pore surface, variation of pore size inside a porous material. Fig. 4 il
lustrates three types of porous matrices: i) ordered hard sphere matrix 
with matrix particles fixed on a lattice; ii) disordered hard sphere matrix 
with matrix particles quenched from an equilibrium configuration of a 
fluid [29]; iii) overlapping hard sphere matrix with matrix particles 
distributed totally randomly in space. By construction, the morpholog
ical thermodynamics cannot distinguish the matrices of types i and ii. 

When the dividing surface is chosen as the surface of HS matrix particles, 
the fluid-matrix interface area of type i or ii matrices can be calculated 
easily and we have, 

A = πσ0
2N0 (13)  

where N0 and σ0 are respectively the number and diameter of the matrix 
particle. 

The fundamental assumption of the morphological thermodynamics 
for treating the type i and type ii matrices is to describe the adsorption as 
the sum of adsorption around each matrix particle. SPT gives the 
following result for the adsorption around the surface of one matrix 
particle, 

πσ0
2ΓSPT

s = − πσ2
(

∂γSPT

∂μSPT

)

T,σ0

= − πσ2
(

∂γSPT

∂ηb

)

T,σ0

/

(
∂μSPT

∂ηb

)

T,σ0

= −
3ηb( 1 − ηb)

1 + 2ηb

[

τ2 +
τ(1 − ηb)

1 + 2ηb +

(
1 − ηb)2

3(1 + 2ηb)

] (14)  

where τ = σ0/σ is the size ratio between the matrix and fluid particles 
(σ0: matrix particle diameter). Besides the contribution given by Eq. 
(14), there is also an additional contribution to the adsorption given by, 

πσ0
2Γ0 =

(
ϕHS

0 − 1
)
ρbV

N0
(15)  

where V is the volume of the matrix sample and ϕHS
0 the geometric 

porosity for a hard sphere matrix, 

ϕHS
0 = 1 −

πσ0
3N0

6V
= 1 − η0τ3 (16)  

with η0 = πσ3N0V− 16− 1. Now, the relation between the packing fraction 
of the confined fluid and that of the bulk fluid with the same chemical 
potential is given by, 

η1 = ϕHS
0 ηb −

3η0ηb(1 − ηb)

(1 + 2ηb)

[

τ2 +
τ(1 − ηb)

1 + 2ηb +
(1 − ηb)

2

3(1 + 2ηb)

]

(17)  

Unlike the case of a slit pore, it is not possible to solve Eq. (17) for 
obtaining an analytical expression of ηb in terms of η1 like Eq. (11). 
Nevertheless, it is still quite easy to obtain the adsorption isotherm of the 
confined fluid with the following procedure. With a given ρb, one ob
tains a value of chemical potential, μ, and the fluid density of the 
confined fluid having the same chemical potential is given by Eq. (17), 
thus the relation between μ and η1 is found. When the size of the fluid HS 
shrinks to zero, i.e., σ = 0, Eq. (17) becomes ρ1 = ϕHS

0 ρb and this allows 
for obtaining the exact result for an ideal gas confined in a HS matrix, i. 
e., βμ = ln

(
Λ3ρ1/ϕHS

0
)
. So, without the additional contribution to the 

adsorption given in Eq. (15), it is impossible to recover the exact ideal 
gas results in the limit of point particles. A more detailed discussion 
about this point is presented in Appendix A. 

The results for a HS fluid confined in two ordered HS matrices with 
different matrix particle sizes and matrix densities are presented in 
Fig. 5. The analytical approach by combining morphological thermo
dynamics and SPT gives excellent results for the chemical potential, as 
evidenced by the comparison with the results of the Monte-Carlo sim
ulations we performed. It is to note that we define the density of a fluid 
confined in a porous matrix with respect to the sample volume which 
contains fluid and matrix particles. Due to this definition, the range of 
fluid densities considered for fluids confined in porous matrices appears 
smaller than that considered for a fluid confined in a slit pore. For 
example, in Figs. 2 and 3 the considered fluid density goes up to 0.8 
while the fluid density considered in Fig. 5 goes only to 0.6. In fact, to 
make a more plausible comparison between the fluid density in a porous 
matrix and that in a slit pore, we should take into account the porosity of 

Fig. 4. Schematic presentation of a fluid of hard spheres (blue spheres) 
confined in different porous matrices composed quenched matrix particles 
(grey). a) ordered porous matrix with hard sphere matrix particles fixed on a 
simple cubic lattice; b) hard sphere matrix quenched from an equilibrium liquid 
configuration; c) overlapping hard sphere matrix with matrix particles 
distributed totally randomly in space. 
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the porous matrix. For the matrix with σ0/σ = 10 and ρ0σ3 = 5.7804 ×

10− 4 in Fig. 5, the porosity is given by ϕ0 = 1 − πρ0σ0
3/6 = 0.69734. 

Dividing the fluid density defined with respect to the sample volume by 
the porosity give the fluid density defined with respect to the void vol
ume. So, ρ1σ3 = 0.6 corresponds in fact to a fluid density defined with 
respect to void volume equal to ρ1σ3/ϕ0 = 0.86. 

We consider next the effect of matrix disorder on the chemical po
tential of the confined fluid. The results for a HS fluid confined in a 
disordered HS matrix are presented in Fig. 6. By construction, the 
morphological thermodynamics does not take the effect of matrix dis
order into account. However, our Monte-Carlo simulation results given 
in Fig. 6 are performed for disordered HS matrices (see Appendix B for 
simulation methods and computation conditions). The very good 
agreement between the results of the morphological thermodynamics 
and the simulation ones show that the effect of matrix disorder on the 
chemical potential is negligibly small. This conforms also to the same 
finding of our recent work [30]. In Fig. 6, the results of the morpho
logical thermodynamics are also compared to those of SPT2b1 theory we 
proposed previously [16], which is an approach developed specifically 
for disordered porous matrices while the morphological thermody
namics is a general approach applicable for a larger variety of inho
mogeneous fluids. 

3.3. A hard sphere fluid confined in an overlapping hard sphere matrix 

The application of morphological thermodynamics to this case fol
lows the general procedure described above. So, we need first determine 
the porosity of the matrix for a point particle, ϕ0, which is required for 
determining ideal gas contribution to the chemical potential. 

ϕOHS
0 =

1
VVN0

∫

dr
∏N0

i=1

∫

qie
− β
∑N0

j=1
ufm(|r− qj| ) =

1
VN0

(

V −
4πR0

3

3

)N0

= exp
(

−
4πR0

3ρ0

3

)

= exp
(
− η0τ3)

(18)  

where r is the position vector of the point particle and qi the position 
vector of the i-th matrix particle. The interaction between the point 
particle and a matrix particle is given by, 

ufm
( ⃒
⃒r − qj

⃒
⃒
)
=

{
∞,
⃒
⃒r − qj

⃒
⃒ < R0

0,
⃒
⃒r − qj

⃒
⃒ ≥ R0

(19)  

with R0 = σ0/2. The thermodynamic limit is taken, i. 
e., lim

N0→∞,V→∞
N0/V = ρ0, when going to the third equality of Eq. (18). The 

interface area is given by, 

AOHS =
d
(
V − ϕOHS

0 V
)

dR0
= V4πR0

2ρ0exp
(

−
4πR0

3ρ0

3

)

= V4πR0
2ρ0ϕOHS

0

(20) 

Fig. 5. Chemical potential of a hard sphere fluid confined in an ordered porous 
matrix, with hard sphere matrix particles fixed on a simple cubic lattice, as a 
function of fluid density. Matrix to fluid particle size ratio: σ0/σ = 5,10; Matrix 
density: ρ0σ3 = 0.001, 5.7804× 10− 4; Red lines: Morphological thermody
namics combined with SPT; Black squares: NVT-ensemble Monte-Carlo simu
lation (see Appendix B for the details about simulation method and 
computation conditions). 

Fig. 6. Chemical potential of a hard sphere fluid confined in a disordered hard 
sphere matrix as a function of fluid density. a) Matrix to fluid particle size ratio: 
σ0/σ = 2; Matrix density: ρ0σ3 = 0.05; b) Matrix to fluid particle size ratio: σ0/

σ = 3; Matrix density: ρ0σ3 = 0.0149208,0.019397; c) Matrix to fluid particle 
size ratio: σ0/σ = 5; Matrix density: ρ0σ3 = 0.0044421, 0.0057473; Red lines: 
Morphological thermodynamics combined with SPT; Blue dashed lines: SPT2b1 
theory [16]; Black squares: Monte-Carlo simulation (Results in (a) from our 
NVT-ensemble Monte-Carlo simulations with the details of simulation method 
and computation conditions given in Appendix B, those in (b) and (c) from the 
µVT-ensemble Monte-Carlo simulations given in Table III of [15]). 
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The integrated mean and Gauss curvatures are given respectively by, 

COHS
M =

1
2

dA
dR0

= V4πR0ρ0
(
1 − 2πR0

3ρ0
)
exp
(

−
4πR0

3ρ0

3

)

= V4πR0ρ0

(

1 −
3
2
η0τ3

)

ϕOHS
0

(21)  

COHS
G =

1
2

d2A
dR0

2 = V4πρ0
(
1 − 12πR0

3ρ0 + 8πR0
6ρ0

2)exp
(

−
4πR0

3ρ0

3

)

= V4πρ0

(

1 − 9η0τ3 +
9
2

η0
2τ6
)

ϕOHS
0

(22)  

Finally, the morphological thermodynamics combined with SPT gives 
the following relation between the density of the confined fluid to that of 
the bulk fluid which has the same chemical potential, 

η1 = ϕOHS
0 ηb −

3η0ηb( 1 − ηb)

(1 + 2ηb) ϕOHS
0

[

τ2 +
τ(1 − ηb)

1 + 2ηb

(

1 −
3
2
η0τ3

)

+

(
1 − ηb)2

3(1 + 2ηb)

(

1 − 9η0τ3 +
9
2

η0
2τ6
)] (23)  

The results for a HS fluid confined in an overlapping hard sphere matrix 
are presented in Fig. 7. The results given by morphological thermody
namics are again in excellent agreement with the simulation ones under 
all the conditions we have studied. 

3.4. A hard sphere fluid confined in a hard sponge matrix 

The last system we consider is a hard sphere fluid confined in a hard 
sponge model proposed by two of us (SLZ and WD) with Q. H. Liu [31]. 
Fig. 8 gives a schematic presentation of this model. In this case, the 
interaction potential between a fluid particle and the matrix is a non- 
additive n-body one given by, 

vfm
(
r, q1, q2, ..., qN0

)
= − kBTln

[

1 − e− β
∑N0

j=1
ufm(|r− qj|)

]

(24)  

where ufm

(⃒
⃒
⃒r − qj

⃒
⃒
⃒

)
is given by Eq. (19) and now σ0 is the diameter of a 

spherical cavity in the sponge matrix. Although this fluid-matrix inter
action potential is non-additive, it is still possible to obtain an analytical 
result for the porosity, i.e., 

ϕHSG
0 =

1
VVN0

∫

dr
∏N0

i=1

∫

qie
− βvfm(r,q1 ,q2 ,...,qN0 )

=
1

VVN0

∫

dr
∏N0

i=1

∫

qi

[

1 − e− β
∑N0

j=1
ufm(|r− qj| )

]

= 1 −
1

VN0

(

V −
πσ0

3

6

)N0

= 1 − exp
(

−
πσ0

3ρ0

6

)

= 1 − ϕOHS
0

(25)  

The thermodynamic limit is taken, i.e., lim
N0→∞,V→∞

N0/V = ρ0, when going 

to the fourth equality of eq.(25). It is not difficult to see that if the cavity 

Fig. 7. Chemical potential of a hard sphere fluid confined in an overlapping 
hard sphere matrix as a function of fluid density. Red lines: Morphological 
thermodynamics combined with SPT; Blue dashed lines: SPT2b1 theory [16]; 
Black squares: Monte-Carlo simulation (Results in (a) from our NVT-ensemble 
Monte-Carlo simulations with the details of simulation method and computa
tion conditions given in Appendix B, those in (b) and (c) from µVT-ensemble 
Monte-Carlo simulations of [15]). a) Matrix to fluid particle size ratio: σ0/σ =

1; Matrix density: ρ0σ3 = 0.1590 (the red line and the blue dashed lines nearly 
overlap each other); b) Matrix to fluid particle size ratio: σ0/σ = 3; Matrix 
density: ρ0σ3 = 0.020683, 0.031328; c) Matrix to fluid particle size ratio: σ0/

σ = 5; Matrix density: ρ0σ3 = 0.006128, 0.0092824. 

Fig. 8. Schematic presentation of a fluid of hard spheres (blue spheres) 
confined in a hard sponge matrix (grey). 

C.Z. Qiao et al.                                                                                                                                                                                                                                  



Journal of Molecular Liquids 392 (2023) 123345

7

diameter is the same as that of the matrix particle in an OHS matrix and 
their number densities are also equal, the following relations hold be
tween the interface area, integrated mean and Gauss curvatures of the 
hard sponge matrix and those of the OHS matrix, 

AHSG = AOHS (26)  

CHSG
M = − COHS

M (27)  

CHSG
G = COHS

G (28)  

The relation given in Eq. (27) reflects the simple fact that the confined 
fluid is adsorbed on a convex surface in a OHS matrix but on a concave 
surface in a hard sponge matrix. 

In Fig. 9, the results of the morphological thermodynamics for a HS 
fluid in a hard sponge matrix are presented along with simulation results 
under different conditions. The accuracy of our approach based on the 
morphological thermodynamics is again remarkable. 

3.5. Contribution of surface curvatures 

The comparison of the respective results for OHS and hard sponge 
matrices indicates that the contribution of the surface curvature terms to 
the adsorption isotherm can be quite small. More detailed analyses show 

Fig. 9. Chemical potential of a hard sphere fluid confined in a hard sponge 
matrix as a function of fluid density. a) Cavity to fluid particle size ratio: σ0/σ =

5; Cavity center density: ρ0σ3 = 0.020685,0.012855; b) Cavity to fluid particle 
size ratio: σ0/σ = 7; Cavity center density: ρ0σ3 = 0.006128, 0.003809; c) 
Cavity to fluid particle size ratio: σ0/σ = 10; Cavity center density: ρ0σ3 =

0.001816,0.001129; Red lines: Morphological thermodynamics combined with 
SPT; Blue dashed lines: SPT2b1 theory [16]; Black squares: µVT-ensemble 
Monte-Carlo simulations (results from Fig. 4 of [16]). 

Fig. 10. Comparison of the results for the chemical potential of a confined fluid 
given by the full morphological thermodynamics (full orange lines) and by its 
simplified version without the contribution of curvature terms (dashed green 
lines). a) a HS fluid in a HS matrix with size ratio σ0/σ = 2 and matrix density 
ρ0σ3 = 0.05; b) a HS fluid in a HS matrix with size ratio σ0/σ = 3 and matrix 
density ρ0σ3 = 0.0149208,0.019397; c) a HS fluid in an overlapping HS matrix 
with size ratio σ0/σ = 1 and matrix density ρ0σ3 = 0.1590. 
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that when the matrix particle is three times larger than the fluid particle, 
the contribution of the surface curvatures is negligible. Fig. 10 shows 
that even for the size ratio (τ = σ0/σ) equal to 1, 2 or 3, the contribution 
of the surface curvatures is quite moderate. Bryk et al have studied the 
adsorption of hard spheres confined between two uniaxial cylinders by 
using DFT. They compared the results for such a confined fluid with 
those for a HS fluid confined in a slit pore of two flat walls and found that 
the surface curvature effect is quite small [32]. Our results presented in 
Fig. 10 are consistent with their finding. To the best of our knowledge, 
there exist no experimental technique for measuring the interface cur
vatures of any porous materials. So, our finding here provides a 
simplified procedure to interpret the experimental results for adsorption 
isotherms by neglecting the contribution of surface curvature terms. 

4. Conclusion 

In the present work, we propose a general approach based on the 
morphological thermodynamics for determining the chemical potential 
of a fluid confined in a large variety of porous media, from a simple slit 
pore to a random hard sponge matrix. Our approach requires an equa
tion of state of the considered fluid in a bulk phase and the surface 
tension of the fluid on a wall with a much simpler morphology than the 
complex porous medium under consideration. For the hard sphere fluid 
confined in the various hard porous media considered in this work, 
scaled particle theory gives both the equation of state of the bulk fluid 
and the surface tension for a HS fluid on a hard-sphere wall. These are 
enough for constructing a totally analytical approach for all porous 
media considered in the present work. The comparison with simulation 
results show that the overall accuracy of our approach is excellent. 
Moderate discrepancies are found only for very narrow slit pores 
(L ≤ 3σ) and at high fluid densities. 

Although previous investigations have shown that non-Hadwiger 
terms (high-order curvature terms not included in morphological 

thermodynamics) do not vanish rigorously [9–12], their contributions 
are usually smaller by one order of magnitude. In the present work, we 
find that even the integrated mean and Gauss curvature terms have a 
negligible contribution to the chemical potential of the confined fluid 
when the surface curvature is not too large. So, even the contribution of 
the integrated mean and Gauss curvatures can be neglected in many 
cases. This simplify significantly the treatment of the experimental re
sults for the adsorption isotherms in practice since the experimental 
technique is currently lacking for measuring the interface curvatures 
inside a porous material. Thus, it is in principle possible to elaborate an 
experimental method for determining the surface tension for the inter
face between a fluid and the pore wall inside a porous material, with the 
help of its adsorption isotherms. 
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Appendix A. An ideal gas confined in a hard sphere matrix 

In this appendix, we show how surface thermodynamics can be applied for an ideal gas adsorbed in a hard sphere matrix and how the surface 
tension can be defined in this case. As in the main text, we consider a grand canonic ensemble. The fluid-matrix interaction is given by, 

V =
∑N

i=1

∑N0

j=1
ufm
( ⃒
⃒ri − qj

⃒
⃒
)

(A1)  

where ri is the position vector of ith fluid particle and qj the position vector of jth matrix particle. The interaction potential between a fluid particle and 
a matrix particle is given by, 

ufm
( ⃒
⃒ri − qj

⃒
⃒
)
=

{
∞,
⃒
⃒ri − qj

⃒
⃒ < R0

0,
⃒
⃒ri − qj

⃒
⃒ ≥ R0

(A2)  

The partition is given by, 

Ξ =
∑∞

N=0

eβμN

Λ3NN!

∫

V

∏N

i=1
drie− βV =

∑∞

N=0

eβμN

Λ3NN!

(

V −
4πR0

3N0

3

)N

= exp
[

eβμ

Λ3

(

V −
4πR0

3N0

3

)]

(A3)  

One obtains straightforwardly following result for the grand potential, 

Ω = − kBTlnΞ = − kBT
eβμ

Λ3 VϕHS
0 (A4)  

Eq. (A4) shows that the grand partition function does not depend on the configuration of the porous matrices. So, the disorder of the matrix con
figurations does not have any influence on the thermodynamics of this system. Moreover, the grand potential does not depend on the surface area of 
the matrix particle. Thus, the immediate consequence of this is that the differential surface tension is zero, i.e., 

γ =

(
∂Ω
∂A

)

T,V,μ,ρ0 ,R0

= 0 (A5) 
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At the first glance, this indicates that surface thermodynamics does not apply for such a system. However, it is also straightforward to show that the 
adsorption in this hard sphere matrix is not zero. The number of the confined fluid inside the matrix is given by, 

Ncf = −

(
∂Ω
∂μ

)

T,V,A,ρ0 ,R0

=
eβμ

Λ3 VϕHS
0 (A6)  

However, the number of a bulk ideal gas occupying the same volume and having the same temperature and the same chemical potential is given by, 

Nbulk =
eβμ

Λ3 V (A7)  

Eqs. (A6) and (A7) lead immediately to the following nonzero adsorption, 

Γ =
Ncf − Nbulk

A
=

eβμ

Λ3
V
A
(
ϕHS

0 − 1
)

(A8)  

The well-known Gibbs adsorption equation implies that a nonzero adsorption should lead to a nonzero surface tension. So, this result seems to be in 
contradiction with that of Eq. (A5) which shows the surface tension is zero. 

Now, we will show that there is in fact no contradiction. It is recently revealed that two surface tensions can arises, one is the differential surface 
tension and the other is the integral surface tension [18,19]. Moreover, it is the integral surface tension which satisfies a generalized Gibbs adsorption 
equation [18]. The integral surface tension includes a contribution from the differential surface tension and another contribution from the disjoining 
pressure. We calculate now the disjoining pressure and show it is indeed nonzero for the system considered here. The pressures of the confined and 
bulk fluids are given respectively by, 

p = −

(
∂Ω
∂V

)

T,A,μ,ρ0 ,R0

= kBT
eβμ

Λ3 ϕHS
0 (A9)  

pbulk = −

(
∂Ωbulk

∂V

)

T ,μ,
= kBT

eβμ

Λ3 (A10)  

Then, one obtains the following result for the disjoining pressure, 

Π = p − pbulk = kBT
eβμ

Λ3

(
ϕHS

0 − 1
)

(A11)  

Disjoining pressure was discovered by Derjaguin in 1930′s for a fluid confined between two closely approached flat solid surfaces [23,24]. To the best 
of our knowledge, nonzero disjoining pressure has never been found for a fluid confined in a fluid confined in a porous matrix. The integral surface 
tension is given by, 

γ̂ = γ − Π
V
A
= − kBT

eβμ

Λ3

(
ϕHS

0 − 1
)V

A
(A12)  

One readily check that this integral surface tension and the adsorption given in Eq. (8) satisfies the following generalized Gibbs adsorption equation 
[18,19], i.e., 
(

∂γ̂
∂μ

)

T,l̂
= − Γ (A13)  

where l̂ = V/A 
Finally, we show that accounting adequately for the integral surface tension and the related adsorption allows for introducing properly the 

porosity, ϕ0, into the adsorption isotherms, i.e., the chemical potential as a function of the density of the confined fluid. From Eq. (A7), one has the 
following equation of state for the bulk ideal gas, 

βμbulk = ln
(
Λ3ρbulk) (A14)  

From Eqs. (A6)–(A8), we obtain, 

ρbulk = ρcf − Γ
A
V
= ρcf − ρcfϕ

HS
0 − 1
ϕHS

0
=

ρcf

ϕHS
0

(A15)  

where ρbulk = NbulkV− 1, ρcf = NcfV− 1. Substituting Eq. (A15) into Eq. (A14), we obtain, 

βμbulk = ln

(
Λ3ρcf

ϕHS
0

)

= βμcf (A16)  
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When going to the last equality of Eq. (A16), Eq. (A6) is used. This achieves the proof that the matrix porosity enters into the isotherm of adsorption, i. 
e., the relation between the chemical potential and the density of the confined fluid, through the adsorption due to the disjoining pressure. 

Appendix B. Simulation method and computational conditions 

In the main text, accompanying the presentation of the results given by morphological thermodynamics, Monte-Carlo simulation results are also 
presented to assess the accuracy of theoretical approach in each case. Except those results with their references being indicated, all the other ones are 
obtained from our own simulations. In this appendix, we summarize the simulation methods and the computation conditions for each porous medium. 

1. Fluid in a slit pore 
The Monte-Carlo simulation results presented in Figs. 2 and 3 are obtained by our own simulation in a NVT-ensemble. The chemical potential is 

calculated by using the test particle method based on Widom’s potential distribution theorem [33]. The two pore walls are respectively placed at z =

±L/2. The pore wall has a square shape of the size 10σ × 10σ. The periodic boundary condition is used in the two directions parallel to the pore walls. 
For each simulation run, 2 × 105 Monte-Carlo cycles are first performed to prepare the system to equilibrium, then 106 MC cycles are performed to 
calculate the chemical potential. 

2. Fluid in various porous matrices 
For the ordered porous matrix (results shown in Fig. 5), we studied only the case with matrix particles placed on a simple cubic lattice. A single 

matrix particle is placed at the center of the cubic simulation box. The periodic boundary condition is applied in three directions to generate a simple 
cubic lattice. The simulation box has respectively the size of 20σ × 20σ × 20σ and 36σ × 36σ × 36σ for the cases of σ0 = 5σ and σ0 = 10σ. 

For the disordered HS matrix (results shown in Fig. 6), a matrix sample is first generated with an NVT-ensemble Monte-Carlo simulation for 50 hard 
spheres of diameter σ0 in a simulation box of the size 10σ × 10σ × 10σ. Then, fluid particles are introduced into the HS matrix and NVT-ensemble 
Monte-Carlo simulations are performed for the confined fluid. The average over matrix configurations is realized with about 10–20 different matrix 
samples. 

For the overlapping hard sphere matrix (results shown in Fig. 7a), 159 matrix particles with the same diameter as the fluid particle, i.e. σ0 = σ, are 
placed totally randomly in the simulation box of the size, 10σ × 10σ × 10σ. The average over matrix configurations is realized with 10 different matrix 
samples. 

As for the slit pore, each simulation for a given matrix sample includes about 2 × 105 Monte-Carlo cycles for preparing the system to equilibrium 
and 106 production cycles for determining the chemical potential. The simulation code can be found on GitHub (https://github.com/qiaochongzhi/M 
C-for-ConfinedFluid). 
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