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a b s t r a c t

Constructing a more effective value at risk (VaR) prediction model has long been a goal in financial risk 
management. In this paper, we propose a novel parametric approach and provide a standard paradigm to 
demonstrate the modeling. We establish a dynamic conditional score (DCS) model based on high-frequency 
data and a generalized distribution (GD), namely, the GD-DCS model, to improve the forecasts of daily VaR. 
The model assumes that intraday returns at different moments are independent of each other and obey the 
same kind of GD, whose dynamic parameters are driven by DCS. By predicting the motion law of the time- 
varying parameters, the conditional distribution of intraday returns is determined; then, the bootstrap 
method is used to simulate daily returns. An empirical analysis using data from the China’s stock market 
and the U.S. stock market shows that Weibull-Pareto -DCS model incorporating high-frequency data is 
superior to traditional benchmark models, such as RGARCH, in the prediction of VaR at higher risk levels, 
which proves that this approach contributes to the improvement of risk measurement tools.

© 2023 Board of Trustees of the University of Illinois. Published by Elsevier Inc. All rights reserved. 

1. Introduction

The wide application of electronic trading systems in financial 
markets and the massive increase in the quantity of business trading 
have made market risk measurement the main focus of regulatory 
authorities and investors. Risk measurement can provide banks and 
financial institutions with specific potential loss values so that risk 
managers can adjust capital reserves for downside risks. VaR is one 
of the most important financial risk measurement tools that dom
inate contemporary financial supervision. VaR provides the worst- 
case loss at a given level of confidence. According to the Basel Accord 
proposed by the Bank for International Settlements (BIS) in 1996, a 
bank’s risk capital must be sufficient to cover 99% of the possible 
losses during a 10-day holding period. VaR has become the most 
popular risk management tool in the financial services industry; 
however, VaR is inherently flawed because it ignores the shape and 
structure of the tail. Artzner et al. (1999) believed that VaR was not a 
coherent risk measurement and that it cannot accurately measure 
market risk. Although other risk measures, such as expected short
fall (ES), can make up for the shortcomings of VaR to some degree, 
they cannot completely replace VaR and shake the position of VaR as 

one of the most important risk management tools. Therefore, im
proving the accuracy of VaR forecasts remains a core issue in fi
nancial risk measurement.

Combined with the expression of Engle and Manganelli (2004), 
the current models of risk measurement can be roughly divided into 
three categories: parametric, nonparametric and semiparametric 
models. Since the returns of financial market variables usually ex
hibit nonnormality, parametric models are often criticized for failing 
to specify the correct distributions for these variables. Nonpara
metric models mostly construct portfolio models based on historical 
returns of a specific window length to mimic the past performance 
of current portfolios and then calculate current VaR based on sta
tistical models. Such models do not require distributional assump
tions, but the best size for the estimation window is difficult to 
determine (Engle & Manganelli, 2004). Some recent semiparametric 
models directly impose a dynamic parameter structure on VaR 
without assuming the conditional distribution of financial returns 
(Engle & Manganelli, 2004; Patton et al., 2019). Based on the semi
parametric model proposed by Patton et al. (2019), Lazar and Xue 
(2020) added realized volatility to the model for a more accurate 
joint estimation of VaR and ES. However, due to the high integration 
of semiparametric models and the limitations of nonparametric 
models, if we consider further improving the model by directly using 
intraday high-frequency returns instead of volatility, parametric 
models are the most feasible.
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Whether high-frequency (HF) intraday information can improve 
the accuracy of risk measurement forecasts has been widely dis
cussed. Since Andersen and Bollerslev (1997), Andersen et al. (2001a, 
2021b), and Barndorff-Nielsen and Shephard (2002) have all used 
realized volatility as an effective and consistent estimator of po
tential volatility, the availability of HF data has gradually improved. 
Shephard and Sheppard (2012), Noureldin et al. (2012), and Hansen 
et al. (2012) proposed models that include HF to fit the conditional 
second moment of returns. Bee et al. (2019) added several realized 
volatility measures to POT models and compared their estimation 
efficiency for the tail parameter. However, the direct utilization of 
intraday HF returns in the risk model is still in its infancy. Hallam 
and Olmo (2014) and Cai et al. (2019) constructed functional auto
regressive VaR models to fit the distribution of daily returns by es
timating the kernel density function of intraday returns. However, 
the distribution obtained in this way mainly considers the fitting of 
most data, while the fitting of the tail of the distribution is not 
sufficient due to the scarcity of data. This is also a major drawback of 
such models. This background prompts the research question of this 
article, namely, whether a parametric risk model based directly on 
intraday returns will improve the accuracy of VaR forecasts. The 
focus of modeling in our work is then shifted to three specific 
questions: (a). Which kind of distribution is most suitable for fitting 
the returns? (b). What mechanism can be used to accurately esti
mate the time-varying parameters. (c). What method can be used to 
improve the daily VaR forecast directly using intraday HF returns 
rather than realized volatility?

Which kind of distributions should be specified to model returns is 
indeed a question worth considering. Since many of the most im
portant differences between actual distributions and normal dis
tributions are reflected in the “skewness”, the early expansion of the 
distribution is reflected in the construction of the so-called “skew 
probability curve” system (Pearson, 1894; Burr, 1942; Johnson, 1949). 
The Pareto distribution, a type of statistical model with a power-law 
tail, is often used to simulate data with obvious right-skewness and a 
heavy right tail (Klugman et al., 1998). Since Pickands (1975) first 
proposed the so-called generalized Pareto distribution (GPD) when 
making statistical inferences about the upper tail of a distribution 
function, various forms of the Pareto distribution and its general
ization emerged. Such a generalized form is useful for modeling ex
treme values using the original distribution by better capturing the 
long tail feature of financial data (Choulakian & Stephens, 2001). 
However, the density function of the Pareto family is monotonically 
decreasing, and it ignores the spike pattern of the data distribution to 
seek for more accurate estimation of tails. Specifically, if the gen
eralized Pareto distribution is specified, the modeling process will 
discard most of the data because the distribution sacrifices the fit to 
the full distribution to improve the accuracy of the estimates of the 
tails, which will result in a certain degree of information loss. What’s 
more, the fitting efficiency also depends on how the tails are trun
cated, i.e., how much of the data may be censored according to a 
selected threshold, which leads to large uncertainty in this estimation 
process. Hence, we intend to improve the existing generalized dis
tribution applicable to financial return data by using an alternative 
approach to make it more flexible: First, the new-derived generalized 
distribution is able to portray the complete distribution form of fi
nancial data, containing complete information about asset returns 
with clear economic implications (e.g., reflecting the degree of market 
effectiveness, etc.); second, the new-derived generalized distribution 
is able to accurately capture the tail pattern without involving the 
selection of the threshold while maintaining some other distribution 
characteristics, such as Weibull and gamma, which are also important 
in extreme value theory(EVT).

Alzaatreh et al. (2013) introduced a more general method to 
derive the generalized distribution (GD) family using a probability 
density function of a random variable with any values, which 

provides us with a useful tool for achieving the above purpose. All 
the GDs obtained through this transformation are called “T-X” dis
tributions. The “T-X” transformation makes it possible to con
tinuously develop newly GDs. This kind of distribution may be 
flexible and applicable for specific types of data, such as data with a 
bimodal distribution and financial returns with severe heavy tails. 
Although many well-known GDs exist, due to the differences in their 
generation mechanisms, we consider several “T-X” distributions 
with the same “X” but different “T” as the distribution pool for fitting 
financial returns to illustrate the modeling process and compare the 
performance of different models. In the Pareto family, Pareto IV 
(Cronin, 1979) is particularly worthy of attention. Pareto IV contains 
the most parameters, and when the parameters in Pareto IV take 
specific values, the corresponding special cases are named after 
Pareto I-III. Since Pareto IV can accurately capture the tail risk of 
financial data, we consider it as the fixed “X” in the various “T-X” 
distributions to achieve an accurate fitting of the returns. It is worth 
noting that this transformation is a universal method to generate 
new distributions of interest with a high degree of flexibility, and 
only T-Pareto IV is used as an example to show the technical details. 
We will also demonstrate in the empirical section that the gen
eralized distribution containing Pareto IV is more flexible than the 
original Pareto IV in terms of the fitting of the financial data.

In financial risk management, it is essential to accurately estimate 
the time-varying parameters that control the appearance of the re
turns’ distribution. Cox et al. (1981)) divided models with dynamic 
parameters into parameter-driven and observation-driven models. 
The evolution of parameters in the observation-driven model depends 
on the function of the observed values, such as the autoregressive 
conditional heteroscedasticity (ARCH) model of Engle (1982), the 
generalized autoregressive conditional heteroscedasticity (GARCH) of 
Bollerslev (1986) and the dynamic conditional scoring model (DCS) 
proposed by Creal et al. (2012) and Harvey (2013). The factor that 
drives the parameters in the DCS model is the standardized score 
(namely, the first derivative of the probability density function with 
respect to the parameter), which ensures strong adaptability to non- 
normal data and maintains highly robust estimation (Lucas & Zhang, 
2015). Thus, DCS has been increasingly popular in fitting the dis
tribution of financial variables. Zhang and Bernd (2016) and Massacci 
(2017) introduced dynamic score-driven models to estimate the 
probability of extreme returns and the size of the exceedance. Ayala 
and Szabolcs (2019)) proposed a DCS model based on the normal 
inverse Gaussian (NIG) distribution that can simultaneously update 
the volatility through the scale parameter and the shape parameter. 
Patton et al. (2019) developed methods for the joint assessment of 
dynamic VaR and ES under the framework of DCS. Based on the model 
of Ayala and Szabolcs (2019), Song and Li (2022) proposed a new VaR 
prediction model by using intra-day information to form the daily 
return distribution. Encouraged by the fact that the DCS model is 
suitable for fitting distributions with time-varying parameters and 
has highly efficient estimation, we consider constructing a model 
with DCS to better capture the motion law of returns.

Most applications of HF information in risk modeling consider 
realized volatility based on intraday returns as an extra explanatory 
variable or make use of the deviation of HF data to improve the 
semiparametric risk model. Under the framework for the joint esti
mation of VaR and ES proposed by Patton et al. (2019), Lazar and Xue 
(2020) added realized volatility to the original quantile regression 
setup to estimate risk measures. Rice et al. (2020) focused on the 
deviation of intraday returns and constructed a VaR model based on 
GARCH and a functional quantile regression model. Inspired by the 
research of Cai et al. (2019), instead of converting intraday information 
into volatility, we apply bootstrapping to directly sample intraday 
returns to obtain the simulated distribution of daily returns rather 
than apply the common method. In this way, we can avoid under
estimating the tail risk of the distribution due to the scarcity of 
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extreme value data of returns. Then, VaR is obtained through the 
quantiles of the distribution. Several backtesting procedures and 
model confidence sets (MCSs) are implemented to determine the re
latively best frequency of intraday returns to be used in modeling and 
to compare the forecasting effects of GD-DCS-VaR and RGARCH-VaR.

The remainder of this paper is organized as follows. Section 2
outlines the construction and assessment of the GD-DCS model. It 
first introduces three “T-Pareto IV” generalized distributions and 
gives the score-driven equation for each dynamic parameter in these 
GDs along with its maximum likelihood (ML) estimator. Then, it 
explains the bootstrap method for obtaining the daily return dis
tribution based on intraday returns. Finally, it illustrates three 
common backtesting approaches and MCS for assessing the effect of 
out-of-sample VaR forecasts. Section 3 details the empirical data of 
China’s stock market and the U.S. stock market used in the analysis 
and the corresponding data processing. In Section 4, the test results 
indicate that VaR forecasts by the model formed on HF data are 
indeed less likely to underestimate risk, and in terms of coverage 
ability and independence, GD-DCS-VaR gains an advantage over 
RGARCH-VaR at high risk levels. Section 5 concludes this article. 
Supplementary materials are relegated to Appendices A and B.

2. Methodology

2.1. “T-X” family

Alzaatreh et al. (2013) proposed a method for generating con
tinuous GD families that allows the probability density function 
(p.d.f.) of any distribution to be used as a generator.

Denote r t( ) as the p.d.f. of a random variable T, T a b[ , ], and 
denote W F x( ( )) as a function of the cumulative distribution function 
(c.d.f.) F x( ) of any continuous random variable X . W F x( ( )) should 
satisfy W F x a b( ( )) [ , ]; W F x( ( )) is differentiable, monotonous and 
nondecreasing; =W F x alim ( ( ))

x
, =W F x blim ( ( ))

x
. Then, the c.d.f. 

of a new GD family can be deduced by the following formula:

=G x r t dt( ) ( )
a

W F x( ( ))

(1) 

Correspondingly, the p.d.f. is

=g x
d

dx
W F x r W F x( ) ( ( )) { ( ( ))}

(2) 

W F x( ( )) acts as a “transformer” to create the p.d.f. r t( ) is 
“transformed” into a new c.d.f., G x( ), through integration in (1). 
Therefore, g x( ) in (2) has completed the transformation from the 
random variable T to random variable X , and the GD defined by (1) is 
named the “Transformed-Transformer” or “T X” distribution.

Different W F x( ( )) can define different GDs. The specific form 
depends on the value range of the random variable T ; for details, 
please refer to the definition of Alzaatreh et al. (2013). Since 
common distributions used as the "transformed" distribution, such 
as the Weibull distribution, gamma distribution, and Rayleigh dis
tribution, all require nonnegative observations, for +T (0, ), 
W F x( ( )) has three commonly used expressions, among which 

=W F x F x( ( )) ln(1 ( )) is the form focused on by Alzaatreh et al. 
(2013). This paper also focuses on the GD family derived from 

+T [0, ) and =W F x F x( ( )) ln(1 ( )). In addition, to make the 
different GDs in the GD pool more comparable, we fix X in T-X, that 
is, we let X be a random variable that obeys the Pareto IV distribu
tion, and then compare the fitting efficiency with different T’s.

Different W F x( ( )) can define different GDs, and its specific form 
depends on the range of the random variable T . More details can be 
found in the definition of Alzaatreh et al. (2013). For example, for 
distributions that are commonly "transformed", such as the Weibull 
distribution, gamma distribution, and Rayleigh distribution, since 

they require nonnegative observations, i.e., +T [0, ), W F x( ( )) has 
three corresponding expressions. Among them, 

=W F x F x( ( )) ln(1 ( )) is the major form that Alzaatreh et al. 
(2013) focused on and is also the form we are interested in. Speci
fically, to make the different GDs in the “pool” more comparable, we 
use three different distributions with a fixed “X”; that is, we let X be 
a random variable that obeys the Pareto IV distribution and then 
compare the fitting efficiency of T-Pareto IV GDs, where “T ” refers to 
the Weibull, gamma, and Rayleigh distributions, respectively.

2.1.1. Weibull-Pareto IV
Assuming that the random variable T follows a Weibull dis

tribution, its p.d.f. is

=r t
c t t

t c( ) exp , 0, 0, 0
c c1

(3) 

Since

=G x r t dt( ) ( )
F x

0

ln(1 ( ))

(4) 

Hence, the p.d.f. and c.d.f. of the Weibull-Pareto IV can be de
rived as:

=G x
F x

( ) 1 exp{
( ln(1 ( )) c

(5) 

=g x
c f x

F x
F x F x

( )
( )

1 ( )
[

ln(1 ( ))
] exp{ [

ln(1 ( ))
] }c c1

(6) 

If X obeys Pareto IV, = + > > >f x x x x( ) ( ) [1 ] , 0, 0, 0
1 1 1 1 ; then

= + + +( ) ( ) ( )g x
c

x x x x( ) 1 ln 1 exp ln 1
c

c c
1 1 1 1 1 1 1

(7) 

Let = ; Eq. (7) can then be expressed as:

= + + +

> >

( ) ( ) ( )g x
c

x x x x x

c

( ) 1 ln 1 exp ln 1

0, , , 0

c c c1 1 1 1 1 1 1

(8) 

The distribution that satisfies the above formula is the so-called 
Weibull-Pareto IV, denoted as WPD c( , , )IV , where is the scale 
parameter, c is the shape parameter, and is called the inequality 
parameter because of its interpretation in the economics context. 
The c.d.f. of WPDIV is:

= + > >( )G x x x c( ) 1 exp ln 1 0, , , 0
c1

(9) 

2.1.2. Gamma-Pareto IV
Assuming that T Gamma ( , ), its p.d.f. is

= > >r t t e t( ) ( ( )) , 0, 0, 0
t

1 1 (10) 

In terms of Eq. (4), the p.d.f. of Gamma-X is:

=

=

g x
f x

F x
r F x

f x F x F x

( )
( )

1 ( )
( ln (1 ( )))

( )( ln(1 ( ))) (1 ( ))
( )

1 11

(11) 

Similarly, if X Pareto IV( , ), the p.d.f. of Gamma-Pareto IV is:

= + +

> > > >

( )g x
c

x x x

x c

( )
1

( )
( ) (1 ) ln 1 ,

0, 0, 0, 0,

c
1 1 1 1 1 1 1

(12) 
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where =c . Distributions with the above p.d.f. are Gamma-Pareto 
IV distributions, denoted as GPD c( , , )IV , where , and c denote 
the scale parameter, inequality parameter, and shape parameter, 
respectively. The c.d.f. is given by:

=
+{ }( )

G x
c x

( )
, ln 1

( )
,

1 1

(13) 

where function =t u e du( , )
t u
0

1 denotes the incomplete gamma 
function.

2.1.3. Rayleigh-Pareto IV
If T follows a Rayleigh distribution, its p.d.f. is given by 

=r t e t( ) , 0t
t

2

2

2 2 . From (4), it follows that the p.d.f. of Rayleigh- 
X is:

=

=

g x
f x

F x
r F x

f x F x
F x

F x

( )
( )

1 ( )
( ln (1 ( )))

( )ln(1 ( ))
(1 ( ))

exp(
[ln(1 ( ))]

2
)

2

2

2 (14) 

With X Pareto IV( , ), the p.d.f. of Rayleigh-Pareto IV be
comes:

= + +
+

> > >

( )
g x

x
x x

x
x( )

ln(1 )
( ) (1 ) exp

ln 1

2

0, 0, 0

2 1

2
1 1 1 1

2 1 2

2

(15) 

The distribution defined by (15) is called Rayleigh-Pareto IV, 
denoted as RPD ( , , )IV , where , and denote the scale para
meter, inequality parameter, and shape parameter, respectively. The 
c.d.f. is then given by:

=
+

> > >
( )

G x
x

x( ) 1 exp(
ln 1

2
) 0, 0, 0

2 1 2

2 (16) 

2.2. GD-DCS model

We intend to establish a DCS model to estimate the main time- 
varying parameters appearing in the GDs. DCS is of great interest 
because the score provides a natural update mechanism that links 
the dynamics of the parameters with the likelihood of the observed 
samples (Creal et al., 2012). In risk management, it is essential to 
grasp the law of motion of parameters that control the pattern of 
returns. However, there is no clear standard for setting a certain 
parameter as static or dynamic, which should depend on the specific 
situation. Some financial models (Engle, 1982; Bollerslev, 1986; 
Nelson, 1991; Harvey & Shephard, 1996, 2002; Barndorff-Nielsen & 
Bee et al., 2019) assume a dynamic scale parameter but a static shape 
parameter. Others (Massacci, 2017; Ayala & Szabolcs, 2019; Harvey & 
Ito, 2020) set both the scale parameter and shape parameter to be 
dynamic and achieve better estimation results. The empirical results 
in this article also proves the effectiveness of considering time- 
varying scale and shape parameters.

Let R t, denote the th observation of intraday returns on the tth 
day, where = …t 1, ,T , = …1, ,N, and N varies due to the frequency 
of intraday returns. Considering that the GD mentioned in the article 
is applicable to variables whose observations are greater than 0, we 
shift the entire series of observations of R t, a certain number of 
units to the right to make all the values greater than 0 and then shift 
the VaR calculated based on the distribution after translation to the 
left. From (8), if X WPD c( , , )t

IV
, , the logarithmic expression of 

its p.d.f. yields:

= + + +

+ + >( ) ( )

x lnc cln lnx c

x x x c

lng( ) ln
1

1 ( 1) ln

ln 1 ln 1 , , , 0
c1 1

(17) 

To ensure that both the scale parameter and the shape para
meter c are positive, we set = =cexp( ), exp( ). Since there may 
exist an annual cycle structure in returns over a long period of time, 
to reduce the possible impact that the correlation of the high-fre
quency return series may bring about, we refer to the practice of 
Harvey and Ito (2013) and consider adding seasonal factor qt to the 
autoregressive equation of the scale parameter. The deterministic qt
can be easily obtained by decomposing the time series. Then, the 
laws of motion for t and ct are specified in terms of an auto
regressive process in exponential form as:

= = + + +
= = + +

A B C s q

c v A B v C s

ln

ln
,t t t t t

t t t t

1 1 1 1 , 1

2 2 1 2 , 1 (18) 

where s t, 1 and s t, 1 refer to the standardized scores of t 1 and vt 1. 
Then, it follows that:

= =

= =

s S

s S v

exp ( )

exp( )
,

t t t t t
E

v t v t v t c t t
E v

, 1 , 1 , 1 , 1 1
1

exp (2 )

, 1 , 1 , 1 , 1 1
1

exp (2 )

lng x
t

lng x

c
t

2 ( )
2 1

2 ( )
2 1

(19) 

where t, 1 and v t, 1 denote the first-order partial derivatives of the 
logarithmic density function (17) with respect to the parameters and 
S t, 1 and Sv t, 1 represent the factors used to standardize the scores.

Similarly, for X GPD c( , , )t
IV

, , we write its logarithmic den
sity function as:

= + + + +

+ + + >( ) ( )

x lnx
c

x x x c

ln g( ) [ln ln c ln ( )]
1

1 1
1

ln

1 ( 1) ln ln 1 , , , 0
1 1

(20) 

Due to the positiveness of c and , we let = =c exp( ), exp( )
and define their score-driven models as:

= = + +
= = + + +
c A B C s

v A B v C s q

ln

ln
,

t t t t

t t t t t

1 1 1 1 , 1

2 2 1 2 , 1 (21) 

where

= =

= =

s S

s s v

exp( )

exp( )

t t t c t t
E

v t v t t t t
E v

, 1 , 1 , 1 , 1 1
1

exp(2 )

, 1 , 1 , 1 , 1 1
1

exp(2 )

lng x

c
t

lng x
t

2 ( )
2 1

2 ( )
2 1

(22) 

If X RPD ( , , )t
IV

, , then the p.d.f. of this random variable can 
be expressed as follows:

= + + +

+
+

> > >

( )

( )
( )

x x lnx

x
x

x

ln g( ) 2ln 2 ln ln 1 2 ln ln
1

1

ln 1
ln 1

2
0, 0, 0

1

1
2 1 2

2 (23) 

Denote and construct the score-driven model as:

= + + +
= = + +

A B C s q

v A B v C sln
,

t t t t

t t t t

1 1 1 1 , 1

2 2 1 2 , 1 (24) 

where
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= =

= =

s S

s S vexp( )

t t t t
E

v t v t t t t
E v

, 1 , 1 , 1 , 1
1

, 1 , 1 , 1 , 1 1
1

exp(2 )

lng x

lng x
t

2 ( )
2

2 ( )
2 1

(25) 

See Appendix A for the specific derivation process involved in the 
formulas. Then, the ML method is used to estimate the combination 
of parameters, = A B C A B C{ , , , , , }1 1 1 2 2 2 , involved in the GD-DCS 
model, namely:

= … = …
=

argmax f r r r t Tˆ ln[ ( | , , ), 1, 2, 3
t

T

t t t
1

1 1
(26) 

2.3. Intraday-return-based estimation for Daily VaR

The DP-DCS model specifies a GD for intraday returns and esti
mates the time-varying parameters in each interval and on each day. 
Since the form of the HF distribution is determined via this ap
proach, how to combine the information of intraday returns to fit the 
conditional distribution of daily returns deserves careful con
sideration. Furthermore, which frequency of intraday data provides 
the most accurate estimate also needs to be verified.

In terms of the strong form of efficiency market hypothesis, in
traday returns at different moments can be independent from each 
other. Under this strong assumption, a common statistical method 
named bootstrap can be used to simulate a conditional distribution 
of daily return based on the sum of samples of intraday returns. The 
essence of this method is to directly add up the moment-specific 
simulated returns to get the daily return. However, due to the pos
sible correlation between the returns within the same day, there will 
be overlaps in the aggregation process, which will result in errors in 
the estimation of the daily return. As mentioned in Section 2.2, we 
believe that the intraday periodic structure may be the cause of the 
linear correlation between the series, so the seasonal factor is added 
to the model to relieve the impact of independence and thus make 
the method more feasible.

The bootstrapping takes the following specific steps: First, the 
probability density distribution of the thintraday returns is divided 
into M equal areas; then, M non-equidistant bins are produced and 
their intervals are calculated to form a set, … …x x x{ , , , , }j M,0 , , , 

= …j M0,1, , . Second, we define = + +m x x( )/2j j j, , , 1 and form a 
grid set, … …m m m{ , , , , }j M,1 , , . Third, we draw N (the number of HF 
data points within one day) real numbers randomly from a uniform 
distribution over (0, 1) for each bootstrap iteration; thus, the num
bers can be denoted as { … …q q q, , , ,b b N b1, , , }, where q U (0, 1)b, and 
the number of iterations satisfy = …b B1, , . By solving the inverse 
function of (4) with q b, as the independent random variable, we can 
obtain an approximate intraday return. Next, the approximate return 
is compared with x j, and we determine which grid the return be
longs to in terms of the corresponding m

*j,
as the estimated th

intraday return. Therefore, a daily return can be constructed by 
= =R m

*b t
N

j, 1 , for each iteration. After B bootstrapping cycles, we 
obtain the estimated distribution of daily returns on day t when B is 
sufficiently large. Generally, M is set to 100 and B is set to 1000. 
Finally, we treat the th quantile of this distribution as the estimated 
daily VaRˆ ( ). Similarly, the same approach can be applied to intraday 
returns on other days to generate a series of VaRˆ ( ) values.

The GD-DCS-VaR model is essentially a parametric approach to 
obtain dynamic daily VaR based on HF returns. Due to the updating 
mechanism of DCS, the proposed model is expected to be sensitive to 
variation in risk. The incorporation of intraday information allows it 
to measure risk from a microscopic perspective. Theoretically, this 
GD-DCS-VaR model could precisely measure the tail risk of returns 
and thus improve VaR forecasts.

2.4. Backtesting and MCS for VaR

Several backtesting methods can be used to assess the estimates 
or forecasts of VaR generated by the GD-DCS model. Backtesting is a 
statistical procedure where actual profits and losses are system
atically compared to the corresponding VaR estimates. We consider 
applying the LR of the unconditional coverage test (LRUC), the LR of 
the conditional coverage test (LRCC), and the dynamic quantile (DQ) 
test to measure the coverage ability and the independence of VaR.

However, backtesting fails to provide an overall assessment of 
the effectiveness of VaR; thus, it is difficult to intuitively compare the 
performance of different models. Hansen et al. (2011) developed the 
MCS procedure to assess the performance of a given set of VaR series 
belonging to several different models. Hansen’s procedure can yield 
a set of “superior” models based on a series of statistical tests, where 
the null hypothesis of equal predictive ability (EPA) is not rejected at 
a certain confidence level. We could then perform MCS to compre
hensively evaluate the accuracy and effectiveness of several VaR 
models.

3. Data and data processing

3.1. Construction of return series

We conduct empirical evidence in both China’s stock market and 
the U.S. stock market. In China’s stock market, Shanghai SE 
Composite Index (SH000001) and the Shenzhen SE Component 
Index (SZ399001) these two major indexes are chosen as the em
pirical objects. We collect the daily closing prices from January 5, 
2009, to December 31, 2015, which includes 1700 trading days and 
no public holidays, to form the historical data set of daily returns. 
Since we are interested in HF returns with 20-minute,30-minute, 
and 40-minute sampling frequencies, we also collect the corre
sponding HF data to construct three data sets of intraday returns. 
Their sizes are 1700×12, 1700×8, and 1700×6, respectively. In the 
U.S. stock market, we select the S&P 500 index (SPX) and NASDAQ 
index as the main objects. The price series are formed from the 
closing prices of 2499 trading days from January 4, 2011, to 
December 31, 2020. Since the standard intraday trading period of the 
U.S. market is 390 min, we obtain HF intraday price series with 
lengths of 2499×30,2499×13,2499×10 using sampling frequencies of 
13, 30, and 39 min, respectively. The data that support the findings of 
this study are openly available in Mendeley Data at http://doi.org/ 
10.17632/v27t7jvxkn.1.

The returns in this paper refer to logarithmic returns. The daily 
returns are produced by =R P Plog logt t t , and the intraday returns 
can be obtained by =R P Plog logt t t, , 1, , where P refers to the 
closing price at that time. To maintain the continuity of the variable, 
the returns at the first moment on day t are defined as the log price 
at the opening time on day t minus the log price at the closing time 
on day t 1.

From the aspect of risk management, we are most concerned 
with negative returns caused by extreme events; therefore, we ne
gate all returns and concentrate on the VaR along the right tail. In 
the following, all so-called returns refer to returns that have been 
negated; we will not state this point again. Table B1 in Appendix B 
shows the descriptive statistical results of the historical daily returns 
of these four indices, and the unit root test shows that they are all 
first-order stationary, thereby ensuring the stability of the return 
series. As mentioned in 2.2, the three GDs are applicable to random 
variables with nonnegative observations. Therefore, at the beginning 
of the modeling process, the whole series of observations is shifted 
to the right by the absolute value of the smallest negative return. The 
VaR calculated based on the shifted distribution is then be adjusted 
by subtracting this value.
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We then perform Pearson's correlation test to check how the HF 
data used in the empirical study is correlated with each other. The 
results indicate a certain degree of correlation between intraday 
returns. For indices in China’s stock market, the dependence of 
20 min-HF is particularly significant, while that of 30 min-HF is 
weakest. As for the indices in the U.S. market, 30 min-HF intraday 
returns also show the weakest correlation. Compared to China’s 
stock market, there is less correlation between intraday high-fre
quency return series at different moments in the U.S. stock market, 
which also indicates that the U.S. stock market is more developed. 
Although it implies that the strong-form efficient market hypothesis 
can be hardly satisfied, we have already considered the seasonal 
factor to improve the dynamic process of the scale parameter, which 
could effectively reduce the correlation between HF series. From the 
empirical results, this practice is quite effective. What’s more, to 
minimize the negative impact of the existing independence, we tend 
to use low-correlation HF data, i.e., the 30 min-HF data in the em
pirical analysis. See the details of the test results in Table B2 and 
Table B3 in Appendix B.

3.2. Vacation effect and overnight effect

Generally, the “vacation and weekend effect” refers to the phe
nomenon that the opening price after the end of a long closed period 
may be remarkably different from the closing price before the start 
of the closed period. This abnormal fluctuation may lead to “fake” 
extreme returns that do not represent actual information about the 
market. Therefore, returns affected by this effect must be adjusted 
before constructing models. Specifically, we first remove the special 
returns from the original data set and then calculate the sample 
mean and standard deviation. Second, we standardize the returns 
with the weekend effect and vacation effect separately; finally, we 
apply inverse standardization for the affected returns by means of 
the sample mean and standard deviation mentioned above. The HF 
returns with these effects are processed in the same way.

The “overnight effect” refers to the phenomenon that due to the 
accumulation of information over night, a significantly different 
change in stock returns will occur after the stock market opens the 
next day. Since the overnight effect generally appears in the returns 
during the first few moments after opening, for these intraday re
turn series, we consider the overnight effect to exist only in the first 
20-minute return, the first 30-minute return and the first 40-minute 
return within each day. Because each initial intraday return contains 
the overnight effect and they form the corresponding series, this 
series does not have the heterogeneity caused by this effect. Hence, 
there is no need to eliminate the overnight effect. In fact, retaining 
this effect can embody the actual volatility of returns it causes.

3.3. Periodic structure

We assume that the period of seasonal impact on daily returns is 
366 days (including the special case of leap years). Since the returns 
in the empirical study are logarithmic, considering the missing va
lues on holidays and February 29 in nonleap years to be zero is 
reasonable, which means no price changes occur on those days. 
Based on historical data, we use the moving average method to 
decompose the trend and then average the corresponding values on 
each day in the cycle to obtain the deterministic annual periodic 
structure. We believe that it is this periodic structure that plays an 
important role in making the returns at different moment within the 
day linearly related. So once this deterministic component is added 
to the driving mechanism of each moment-specific return, the in
fluence of the same structure that may bring about in the volatility 
of intra-day returns will be neglected.

4. Empirical results

4.1. Comparison of “T-Pareto IV” and Pareto IV

At the very beginning, we fit "T-Pareto IV" and Pareto IV re
spectively for the daily returns of NASDAQ from 2011 to 2020 to il
lustrate why we do not use Pareto IV directly when specifying the 
distribution for the DCS model but propose new generalized dis
tributions. For simplicity, we take Weibull-Pareto as an example.

As we state in the introduction section, we would like to propose 
new flexible distributions that carve out the complete distribution of 
returns while retaining Pareto IV’s ability to accurately capture the 
tail patterns of returns. After all, it is the complete information that 
has practical implications, such as being able to reflect the degree of 
market efficiency, etc. But Pareto IV can only give the estimation of 
the one-sided tail by ignoring major information of returns. 
Additionally, since Pareto IV requires a pre-determined threshold 
value, returns greater than this threshold will be considered as ex
ceedances and used as fitted data, the choice of this threshold also 
affects the tail estimation. As shown in Fig. 1, when the 90% quantile 
of returns is chosen as the threshold, the fitted Pareto tails are clo
sest to the true tails of returns, while when the 99% quantile is 
chosen as the threshold, the estimation error will become large, 
which also directly affects the estimation of VaR. However, the 
Weibull-Pareto IV is not only able to fit the complete distribution of 
the returns, but also has a great capture of the tail shape of the re
turns based on the historical data. And at the same time, it does not 
involve discussing the choice of the threshold. This simple illustra
tion also reveals that our idea of generating the new generalized 
distributions should be reasonable.

4.2. The estimation efficiency of three GD-DCS models

Under the DCS framework, we fit daily returns for China’s indices 
within the window of January 5, 2009 to December 31, 2015 and for 
the U.S. indices within the window of January 4, 2011, to December 
31, 2020, based on Well-Pareto IV, Gamma-Pareto IV, and Rayleigh- 
Pareto IV. The log-likelihood, AIC value and running time are used to 
compare the fitting efficiency of these three distributions. The re
sults in Table 1 show that no matter for which index, for a given 
sample size, WPD-DCS has the largest ML and the smallest AIC. The 
running time is also relatively short. The complicated calculation of 
the gamma function and digamma function may result in GPD-DCS 
taking considerable time to run. Although RPD-DCS is better than 
the other two GDs in terms of fitting speed, its log-likelihood is 
much smaller than that of WPD-DCS and GPD-DCS; moreover, its AIC 
is much larger than that of the other two. Hence, taking goodness of 
fit and efficiency into account, WPD-DCS is selected to produce VaR 
forecasts in the following empirical research.

4.3. Monte Carlo simulation for WPD-DCS

We conduct a simple Monte Carlo simulation to check 
how the model performs in terms of estimation and inference. 
Taking WPD-DCS for daily returns as an example, we consider 
the in-sample estimated results of the coefficients in Eq.(21) as 
the values that are expected to be simulated, i.e., 

= = = = = =A B C A B C1.05, 0.09, 0.15, 2.03, 1.83, 1.421 1 1 2 2 2 . In 
Eq.(21), except for the two parameters involved in WPD, other 
components are known or can be deduced. We assign initial values 
to these two parameters involved in WPD, i.e., = =0, 00 0 and 
follow the dynamics of Eq. (21) and Eq. (22) to obtain the time- 
varying parameters of the distribution. Based on the parameters 
obtained in each step of the simulation, we can determine the 
corresponding probability distribution function of the daily return, 
i.e., F x WPD( ) . Let =F x y( ) , and y is a randomly selected value 
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from 0 to 1. By =x F y( )1 , we can obtain a pseudo sample of the 
daily return. Let the steps of each simulation be 100, 300, 500, and 
1000, and the lengths of the simulated series of daily returns are 
thus to be 100, 300, 500, and 1000, respectively. Based on the si
mulated return series, the WPD-DCS models are constructed to 
estimate the coefficients in Eq. (21). By performing the above si
mulation 1000 times, we can obtain the pseudo distribution of the 
estimated coefficients under different lengths of steps to determine 
whether the estimated mean values are close to the actual values of 
the coefficients as the length of steps increases. Fig. 2 displays the 
distribution of the estimated coefficients in four scenarios.

As Fig. 2 suggests, as the length of the simulated return series 
increases, the corresponding mean values of the estimated coeffi
cients are infinitely close to the true values, which indicates the 
consistency of parameter estimation and the validity of GD-DCS.

4.4. In-sample VaR forecasts based on WPD-DCS

The data in the window from January 5, 2009 to December 31, 
2014 and in the window from January 4, 2011 to December 31, 2019 
are used to generate the in-sample VaR forecasts for indices of 
China’s market and the U.S. market, respectively. The in-sample re
sults represent the validity of daily returns integrated by intraday 
returns with different frequencies. This approach helps to identify 
the relatively better choice of HF data in our application. The coef
ficients in the driving equations can be estimated through Maximum 
Likelihood. We only show the estimators of the in-sample 30 min HF 

returns for SH000001 and SPX in Table B4 in Appendix B as an ex
ample.

For the in-sample VaR generated by the models based on dif
ferent frequencies of HF, we apply several classic backtesting 
methods to compare their performance at risk level 

…{0.90, 0.91, , 0.98, 0.99}. The results for China’s indices and the 
U.S. indices are listed in Tables 2 and 3, respectively (to keep the list 
concise, we present only the four cases where is 0.92, 0.94, 0.96 
and 0.98 in the table; see Appendix B for the complete list). The rank 
indicates the superiority of these four models under a default 
level =( 0.15) set in R function, and the p-value indicates whether 
the null hypothesis of no difference is rejected. The p-value of the 
relevant test is indicated by the value in parentheses. For SH000001, 
according to the statistics and the p-values at different levels of , 
WPD-DCS-VaR based on daily returns is weaker than the 30 min-HF- 
or 20 min-HF-based models in terms of coverage ability, in
dependence and MCS procedure. This result can be seen as strong 
evidence that incorporating the information of intraday returns into 
the model indeed improves the accuracy of VaR forecasts. However, 
if 40 min HF data are used, the test results are not ideal due to the 
possible unreasonable sampling frequency, leading to failure to ac
curately estimate VaR. Furthermore, when 0.95, 20 min HF-based 
VaR gains an advantage over other HF-based VaR in the LRuc test, 
LRcc test, DQ test and MCS test, followed by 30 min HF-based VaR. 
When > 0.95, 30 min HF-based VaR performs best. For SZ399001, 
30 min HF-based VaR shows obvious strength in the test results. 
Except for = 0.9 and = 0.99, the MCS ranking also proves its 

Fig. 1. Fitting of different distributions to the return series. 

Table 1 
Estimation efficiency of three GDs. 

SH000001 SZ399001 SPX NASDAQModel

WPD-DCS GPD-DCS RPD-DCS WPD-DCS GPD-DCS RPD-DCS WPD-DCS GPD-DCS RPD-DCS WPD-DCS GPD-DCS RPD-DCS
The Number of Parameters 7 7 7 7 7 7 7 7 7 7 7 7
Running Time (second) 0.6 6.9 0.5 1.2 6.1 0.5 0.9 5.8 0.75 3.3 9.9 1.26
Maximum Loglikelihood 

Value
2724 2104 296 3891 1455 181 4729 5668 355 6844 6397 221

AIC -5434 -4194 -578 -7768 -2896 -348 -9444 -11322 -696 -13674 -12780 -428

Note: AIC is the Akaike information criterion (Akaike, 1974) calculated as =AIC k L2 2ln( ), where k indicates the number of parameters that are the unknown coefficients in the 
score-driven equation and L indicates the value of the ML function.
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superiority. The combined test results of the two datasets show the 
30 min HF-based-WPD-DCS model presents higher stability and 
greater performance of VaR forecasts at high risk levels.

The advantage of the 30 min sampling frequency is more evident 
in the in-sample VaR forecasts of the U.S. market indices. For both 
the SPX and NASDAQ, the 30 min-WPD-VaR is statistically superior 
to VaR at other sampling frequencies in terms of coverage and in
dependence when the confidence level is from 0.01 to 0.1. The re
sults of MCS rank test are also consistent with this conclusion. Table 
B2 and B3 in Appendix B also proves that the intraday return at 
30 min intervals has the weakest correlation. Therefore, we believe 
that 30 min intraday returns are the best modeling object. Hence, we 
construct the WPD-DCS model based on 30 min intraday returns to 
obtain out-of-sample forecasts and compare them with those from 
other benchmark models.

Fig. 3 intuitively compares the actual returns of SH000001 and 
the frequency-specific-data-based VaR forecasts. The in-sample VaR 
based on daily returns can hardly cover the extreme returns, which 
indicates that WPD-DCS-VaR based on LF may fail to be a qualified 
risk management tool. In sharp contrast, the VaR of 30 min HF en
hances the coverage ability and achieves an overall smaller 

difference from the actual returns. The fact that the number of real 
returns covered by the VaR is more in line with expectations makes 
the 30 min HF-based model perform better in the LRCC and LRUC 
tests. The diagrams of SZ399001, SPX, and NASDAQ all show a similar 
pattern to Fig. 3; see Appendix B for the details.

In the DCS model, since time-varying parameters are driven by a 
linear combination of the score and past information, whether the 
scores are autocorrelated is an important indicator for assessing the 
effectiveness of models. Table B9 in Appendix B lists the p-values of the 
Lagrange multiplier test for the in-sample scores in WPD-DCS. All p- 
values are greater than 0.05, indicating that no significant auto
correlation exists. Hence, the established models are proved to be valid.

4.5. Out-of-sample VaR forecasts based on WPD-DCS

From May to August 2015, China's stock market experienced two 
rounds of cliff-shaped declines due to intense negative returns. In 
March 2020, the U.S. stock market was also shaken by the impact of 
Covid-19. This kind of abnormal volatility had a substantial impact on 
the financial industry in a very short period. Therefore, these events 
are so-called “stock disasters”, and measuring VaR during this period 

Fig. 2. The distribution of the estimated coefficients in WPD-DCS based on the simulated return series. Different colors represent different results under four lengths of simulation 
steps. The dashed line represents the mean value and the orange one indicates the true value of the coefficient.

Table 2 
Backtesting results of in-sample daily VaR estimates, SH000001&SZ399001. 

Model Alpha SH000001 SZ399001

LRuc statistics LRcc statistics DQ statistics MCS rank LRuc statistics LRcc statistics DQ statistics MCS rank

VaR-day 0.92 13.83 (0**) 13.92 (0**) 18.38 (0.01*) 2 8.83 (0**) 8.96 (0.01*) 14.08 (0.05) 2
VaR-40minhq 140.74 (0***) 141.14 (0***) 97.77 (0***) 4 13.04 (0**) 15.57 (0**) 20.52 (0**) 3
VaR-30minhq 12.28 (0**) 12.31 (0**) 17.84 (0.01*) 3 6.51 (0.01*) 6.53 (0.04*) 0.09 (1) 1
VaR-20minhq 0.28 (0.6) 0.63 (0.73) 5.08 (0.65) 1 13.04 (0**) 13.55 (0**) 22.47 (0**) 4
P-value of MCS 0.16 0.42
VaR-day 0.94 6.65 (0.01*) 7.06 (0.03*) 16.61 (0.02*) 3 3.05 (0.08) 3.62 (0.16) 14.4 (0.04*) 3
VaR-40minhq 99.32 (0***) 99.59 (0***) 68.78 (0***) 4 4.41 (0.04*) 6.46 (0.04*) 11.44 (0.12) 2
VaR-30minhq 5.47 (0.02*) 5.74 (0.06) 13.36 (0.06) 2 0.5 (0.48) 0.56 (0.75) 0.06 (1) 1
VaR-20minhq 1.59 (0.21) 2.39 (0.3) 5.66 (0.58) 1 3.05 (0.08) 3.62 (0.16) 14.73 (0.04*) 4
P-value of MCS 0.62 0.46
VaR-day 0.96 0.51 (0.48) 0.51 (0.78) 9.57 (0.21) 2 0.33 (0.57) 0.8 (0.67) 8.65 (0.28) 3
VaR-40minhq 62.89 (0***) 63.02 (0***) 45.77 (0***) 4 0.51 (0.48) 4.27 (0.12) 11.15 (0.13) 2
VaR-30minhq 0.19 (0.66) 1.73 (0.42) 13.5 (0.06) 1 0.01 (0.92) 0.17 (0.92) 0.04 (1) 1
VaR-20minhq 6.33 (0.01*) 8.13 (0.02*) 13.7 (0.06) 3 0.72 (0.4) 2.76 (0.25) 11.6 (0.11) 4
P-value of MCS 0.58 0.47
VaR-day 0.98 5.9 (0.02*) 5.96 (0.05) 20.52 (0**) 2 0.03 (0.87) 0.23 (0.89) 21.06 (0**) 3
VaR-40minhq 31.03 (0***) 31.06 (0***) 22.66 (0***) 4 3.1 (0.08) 5.72 (0.06) 15.21 (0.03*) 2
VaR-30minhq 3.1 (0.08) 5.72 (0.06) 13.12 (0.06) 1 3.1 (0.08) 3.1 (0.21) 0.02 (1) 1
VaR-20minhq 18.66 (0**) 19.4 (0**) 26.88 (0**) 3 3.1 (0.08) 5.72 (0.06) 14.82 (0.04*) 4
P-value of MCS 0.21 0.4

Note: ∗, ∗∗, and ∗∗∗ represent statistical significance levels of 5%, 1%, and.1%, respectively and bold text indicates rejections at the * probability level.
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has great empirical significance. We utilize the WPD-DCS model 
based on intraday data with a 30 min frequency to apply a rolling- 
window scheme to obtain a time series of VaR forecasts at different 
confidence levels, i.e., …{0.90,0.91, , 0.98,0.99}. Let n denote the 
length of VaR to be predicted, m denote the size of the available 
sample and s denote the length of the rolling window. Then, we have 
the sequence of forecasts = + + … +VaR t s s s n{ , 1, 2 , }t , where each 
prediction is obtained considering the observations that incorporate 
the intraday return, …= + = =R R R{ } , { } ,{ }t s t s t, 1

8
, 1 1

8
, 1 1

8 . For China’s 
stock market, we produce =n 244 daily VaR forecasts from January 5 
to December 31 in 2015 by considering the size of the window to be 

=s 1456, and the initial window starts January 5, 2009 and ends 
December 31, 2014. For the U.S. stock market, 249 out-of-sample VaR 
forecasts starts January 2, 2020 and ends December 31, 2020. The size 
of the window, s, is set to be 2250, and the initial window starts 
January 4, 2011 and ends December 31, 2019.

Hansen et al. (2012) introduced the RGARCH framework, which 
combines a GARCH structure for returns with an integrated model 
for realized measures of volatility. RGARCH offers a substantial im
provement in the empirical fit compared to standard GARCH models 
based on daily returns only. Since our model also incorporates HF 

financial data to gain a more accurate modeling of daily returns, we 
consider the RGARCH framework as a benchmark that extends to 
several kinds of distributions, such as skew-student distribution 
(SSTD), generalized error distribution (GED) and NIG, and includes 
realized measures such as realized volatility (RV) and realized range- 
based volatility (RRV). Since RGARCH models have shown good ap
plicability in many empirical studies, we regard them as benchmarks 
to assess the performance of out-of-sample daily VaR forecasts 
generated by 30 min HF-WPD-DCS models.

Table 4 lists the backtesting results along with the MCS ranking 
of SH000001 and SZ399001 at {0.93, 0.95, 0.97, 0.99}. For 
SH000001, when 0.95, WPD-DCS-VaR based on 30 min-HF out
weighs other RGARCH models in terms of coverage ability. When is 
from 0.95 to 0.98, WPD-DCS-VaR always ranks first in the MCS. At 
these high risk levels, the RGARCH-NIG model with RV as its vola
tility measurement performs better than other RGARCH models, but 
it ranks behind WPD-DCS in MCS superiority, which indicates that it 
is inferior in comprehensive assessment compared with our novel 
model. In contrast with SH000001, the WPD-DCS-VaR based on 
SZ3990001 shows an obvious advantage over RGARCH models in 
terms of coverage and MCS. Specifically, when 0.95, WPD-DCS- 

Table 3 
Backtesting results of in-sample daily VaR estimates, SPX&NASDAQ. 

Model Alpha SPX NASDAQ

LRuc statistics LRcc statistics DQ statistics MCS rank LRuc statistics LRcc statistics DQ statistics MCS rank

VaR-day 0.92 16.68 (0***) 16.68 (0***) 8.35 (0.3) 4 0.13 (0.72) 0.18 (0.92) 2.81 (0.9) 2
VaR-39minhq 10.36 (0***) 10.38 (0.01*) 6.46 (0.49) 3 1.4 (0.24) 2.91 (0.23) 6.91 (0.44) 3
VaR-30minhq 2.9 (0.09) 2.96 (0.23) 16.6 (0.02*) 1 0 (1) 2.36 (0.31) 6.66 (0.47) 1
VaR-13minhq 4.38 (0.04*) 4.57 (0.1) 3.65 (0.82) 2 10.36 (0**) 10.38 (0.01*) 6.46 (0.49) 4
P-value of MCS 0.66 0.26
VaR-day 0.94 12.38 (0***) 12.38 (0***) 19.08 (0.01*) 4 0.19 (0.67) 0.72 (0.7) 2.54 (0.92) 2
VaR-39minhq 6.68 (0.01*) 6.7 (0.04*) 4.36 (0.74) 3 0.19 (0.67) 1.7 (0.43) 7.79 (0.35) 3
VaR-30minhq 2.39 (0.12) 2.39 (0.3) 6.13 (0.52) 1 0 (1) 0.9 (0.64) 2.67 (0.91) 1
VaR-13minhq 3.77 (0.05) 3.86 (0.15) 2.76 (0.91) 2 6.68 (0.01*) 6.7 (0.04*) 4.38 (0.74) 4
P-value of MCS 0.26 0.41
VaR-day 0.96 8.16 (0**) 8.16 (0.02*) 4 (0.78) 4 0.24 (0.62) 1.75 (0.42) 4.91 (0.67) 2
VaR-39minhq 8.16 (0**) 8.16 (0.02*) 4 (0.78) 2 0.24 (0.62) 1.75 (0.42) 11.72 (0.11) 3
VaR-30minhq 4.86 (0.03*) 4.91 (0.09) 13.78 (0.06) 1 0 (1) 0.34 (0.84) 0.96 (1) 1
VaR-13minhq 8.16 (0**) 8.16 (0.02*) 4 (0.78) 3 3.32 (0.07) 3.34 (0.19) 2.47 (0.93) 4
P-value of MCS 0.33 0.66
VaR-day 0.98 4.04 (0.04*) 4.04 (0.13) 1.96 (0.96) 2 3.26 (0.07) 4.77 (0.09) 13.95 (0.05) 2
VaR-39minhq 4.04 (0.04*) 4.04 (0.13) 1.96 (0.96) 3 0.44 (0.51) 0.63 (0.73) 4.32 (0.74) 3
VaR-30minhq 4.04 (0.04*) 4.04 (0.13) 1.96 (0.96) 1 0.44 (0.51) 0.63 (0.73) 1.43 (0.98) 1
VaR-13minhq 10.56 (0***) 10.76 (0***) 38.87 (0***) 4 4.04 (0.04*) 4.04 (0.13) 1.96 (0.96) 4
P-value of MCS 0.14 0.68

Note: ∗, ∗∗, and ∗∗∗ represent statistical significance levels of 5%, 1%, and.1%, respectively and bold text indicates rejections at the * probability level.

Fig. 3. Comparison between frequency-specific return-based VaR forecasts, SH000001. 
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VaR ranks first in the MCS assessment, and when < 0.95, WPD- 
DCS-VaR maintains a position in the top three. Similarly, on this 
empirical dataset, RGARCH-NIG-RV is also the best RGARCH model.

For both SH000001 and SZ399001, at a high risk level of α ≥ 0.95, 
WPD-DCS-VaR has a prominent advantage compared with other 
RGARCH-VaRs. Therefore, the out-of-sample VaR forecasts of both 
WPD-DCS and RGARCH under {0.96,0.97,0.98} are visually 
compared in Fig. 4. When clusters of extreme returns occur, for ex
ample, in mid-June and late August, WPD-DCS-VaR can sensitively 
capture the fluctuations in returns and cover the actual returns in a 
more accurate manner due to its unique DCS mechanism.

Table 5 lists the test results of the out-of-sample VaR forecasts of 
SPX and NASDAQ. Slightly different from the results for the China’s 
market, the WPD-DCS model shows an absolute advantage over 
benchmarks only when 0.93. In particular, the VaR forecasts of 
WPD-DCS have much higher coverage and conditional coverage of 
extreme returns than other models, while they also maintain con
siderable independence. There are two possible reasons why the 
advantage of WPD-DCS is more prominent in the empirical results of 
the U.S. market: first, the degree of autocorrelation between high- 
frequency return series at different moments in the U.S. stock 
market is lower than that in the Chinese market, which also 

Table 4 
Backtesting results of out-of-sample daily VaR forecasts, SH000001&SZ399001. 

Model Alpha SH000001 SZ399001

LRuc statistics LRcc statistics DQ statistics MCS 
Rank

LRuc statistics LRcc statistics DQ statistics MCS 
Rank

WPD-DCS 0.93 3.67 (0.06) 4.35 (0.11) 13.55 (0.06) 5 0.28 (0.59) 3.85 (0.15) 22.34 (0**) 2
RGARCH-SSTD-RV 0.91 (0.34) 1.71 (0.43) 7.24 (0.4) 1 2 (0.16) 5.52 (0.06) 13.45 (0.06) 6
RGARCH-GED-RV 0.51 (0.47) 1.62 (0.45) 7.9 (0.34) 3 1.41 (0.24) 5.59 (0.06) 13.15 (0.07) 1
RGARCH-NIG-RV 0.51 (0.47) 1.62 (0.45) 7.93 (0.34) 4 1.41 (0.24) 5.59 (0.06) 10.84 (0.15) 4
RGARCH-SSTD-RRV 1.41 (0.24) 5.59 (0.06) 24.4 (0**) 7 5.33 (0.02*) 13.4 (0**) 33.42 (0**) 5
RGARCH-GED-RRV 2 (0.16) 5.52 (0.06) 22.02 (0**) 2 5.33 (0.02*) 13.4 (0**) 33.44 (0**) 7
RGARCH-NIG-RRV 1.41 (0.24) 5.59 (0.06) 24.29 (0**) 6 5.33 (0.02*) 13.4 (0**) 33.45 (0**) 3
P-value of MCS 0.26 0.52
WPD-DCS 0.95 0.44 (0.51) 1.12 (0.57) 10.53 (0.16) 1 0.27 (0.61) 4.56 (0.1) 31.03 (0**) 1
RGARCH-SSTD-RV 1.14 (0.29) 4.07 (0.13) 9.88 (0.2) 3 4.44 (0.04*) 7.49 (0.02*) 13.56 (0.06) 5
RGARCH-GED-RV 1.14 (0.29) 4.07 (0.13) 9.98 (0.19) 4 3.44 (0.06) 7.12 (0.03*) 13.05 (0.07) 2
RGARCH-NIG-RV 0.63 (0.43) 1.74 (0.42) 5.65 (0.58) 2 3.44 (0.06) 7.12 (0.03*) 13.04 (0.07) 3
RGARCH-SSTD-RRV 3.44 (0.06) 4.9 (0.09) 16.85 (0.02*) 6 9.49 (0**) 21.08 (0**) 54.58 (0***) 7
RGARCH-GED-RRV 2.55 (0.11) 4.44 (0.11) 10.08 (0.18) 5 9.49 (0**) 21.08 (0**) 54.77 (0***) 6
RGARCH-NIG-RRV 3.44 (0.06) 4.9 (0.09) 16.65 (0.02*) 7 6.76 (0.01*) 13.78 (0**) 26.86 (0**) 4
P-value of MCS 0.45 0.38
WPD-DCS 0.97 0.37 (0.54) 1.06 (0.59) 3.21 (0.86) 1 3.71 (0.05) 5.62 (0.06) 45.23 (0**) 1
RGARCH-SSTD-RV 2.6 (0.11) 2.86 (0.24) 17.27 (0.02*) 3 4.99 (0.03*) 6.46 (0.04*) 14.04 (0.05) 5
RGARCH-GED-RV 1.66 (0.2) 2.1 (0.35) 17.28 (0.02*) 5 4.99 (0.03*) 6.46 (0.04*) 14 (0.05) 3
RGARCH-NIG-RV 1.66 (0.2) 2.1 (0.35) 17.32 (0.02*) 2 4.99 (0.03*) 6.46 (0.04*) 14.05 (0.05) 2
RGARCH-SSTD-RRV 4.99 (0.03*) 6.46 (0.04*) 16.48 (0.02*) 6 7.99 (0**) 14.05 (0**) 34.29 (0**) 7
RGARCH-GED-RRV 3.71 (0.05) 3.84 (0.15) 19.69 (0.01*) 4 9.69 (0**) 18.5 (0**) 50.47 (0***) 6
RGARCH-NIG-RRV 3.71 (0.05) 3.84 (0.15) 18.25 (0.01*) 7 6.42 (0.01*) 9.98 (0.01*) 25.24 (0**) 4
P-value of MCS 0.32 0.17
WPD-DCS 0.99 8.01 (0**) 8.55 (0.01*) 2.06 (0.96) 2 4.9 (0.03*) 4.9 (0.09) 2.42 (0.93) 1
RGARCH-SSTD-RV 8.01 (0**) 8.55 (0.01*) 54.91 (0***) 4 10.55 (0**) 11.25 (0**) 29.36 (0**) 5
RGARCH-GED-RV 8.01 (0**) 8.55 (0.01*) 55.09 (0**) 5 10.55 (0**) 11.25 (0**) 28.9 (0**) 3
RGARCH-NIG-RV 5.72 (0.02) 6.14 (0.05) 20.47 (0**) 1 8.01 (0**) 8.55 (0.01*) 27.31 (0**) 2
RGARCH-SSTD-RRV 10.55 (0**) 11.25 (0**) 55.7 (0***) 7 13.33 (0**) 14.19 (0**) 63.01 (0**) 7
RGARCH-GED-RRV 8.01 (0**) 8.55 (0.01*) 54.74 (0***) 3 19.49 (0**) 19.76 (0**) 74.62 (0**) 6
RGARCH-NIG-RRV 8.01 (0**) 8.55 (0.01*) 55.79 (0***) 6 10.55 (0**) 11.25 (0**) 59.67 (0**) 4
P-value of MCS 0.63 0.23

Note: ∗, ∗∗, and ∗∗∗ represent statistical significance levels of 5%, 1%, and.1%, respectively and bold text indicates rejections at the * probability level.

Fig. 4. Comparison of out-of-sample VaR forecasts between the 30 min-WPD-DCS-based and RGARCH-based methods in China’s stock market. 
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improves the effectiveness of WPD-DCS to some extent; second, the 
worldwide spread of Covid-19 in the early 2020 s led to an increased 
volatility aggregation of the U.S. indices, and WPD-DCS has a higher 
sensitivity to volatility due to the capture of time-varying para
meters. This is aptly confirmed by the performance of the out-of- 
sample VaR forecasts shown in Fig. 5. In March 2020, the U.S. stock 
indexes were extremely volatile, and the RAGRCH models have sig
nificant shortcomings for covering extreme returns.

The out-of-sample scores also pass the LM test. Therefore, there 
is no significant serial autocorrelation in the scores generated by 
WPD-DCS based on the 30-min returns. The details are provided in 
Appendix B.The fact that the novel model proposed in this study 
could improve VaR measurement lies in the out-of-sample results. 
The evidence to support this result is that when is high, e.g., 
when 0.95, the WPD-DCS model based on HF data provides more 
accurate VaR predictions in terms of their higher coverage capacity 

Table 5 
Backtesting results of out-of-sample daily VaR forecasts, SPX&NASDAQ. 

Model Alpha SPX NASDAQ

LRuc statistics LRcc statistics DQ statistics MCS LRuc statistics LRcc statistics DQ statistics MCS

WPD-DCS 0.93 0.69 (0.4) 1.33 (0.51) 3.54 (0.83) 1 0 (1) 0.48 (0.79) 9.34 (0.23) 1
RGARCH-SSTD-RV 4.48 (0.03*) 4.5 (0.11) 21.76 (0***) 4 7.11 (0.01*) 8.34 (0.02*) 14.82 (0.04*) 4
RGARCH-GED-RV 4.48 (0.03*) 4.5 (0.11) 21.7 (0***) 3 7.11 (0.01*) 8.34 (0.02*) 14.82 (0.04*) 3
RGARCH-NIG-RV 4.48 (0.03*) 4.5 (0.11) 21.61 (0***) 2 7.11 (0.01*) 8.34 (0.02*) 10.32 (0.21) 2
RGARCH-SSTD-RRV 4.48 (0.03*) 4.5 (0.11) 24.96 (0***) 5 8.25 (0**) 8.25 (0.02*) 4.04 (0.77) 6
RGARCH-GED-RRV 4.48 (0.03*) 4.5 (0.11) 25.56 (0***) 7 8.25 (0**) 8.25 (0.02*) 4.04 (0.77) 5
RGARCH-NIG-RRV 4.48 (0.03*) 4.5 (0.11) 25.01 (0***) 6 8.99 (0**) 10.66 (0.01*) 4.04 (0.77) 7
P-value of MCS 0.26 0.19
WPD-DCS 0.95 0.03 (0.85) 0.67 (0.71) 2.47 (0.93) 1 0.75 (0.39) 1.23 (0.54) 1.45 (0.98) 1
RGARCH-SSTD-RV 5.66 (0.02*) 5.7 (0.06) 36.13 (0***) 4 1.68 (0.19) 2.02 (0.36) 8.93 (0.26) 4
RGARCH-GED-RV 5.66 (0.02*) 5.7 (0.06) 35.76 (0***) 2 1.68 (0.19) 2.02 (0.36) 8.93 (0.26) 3
RGARCH-NIG-RV 5.66 (0.02*) 5.7 (0.06) 35.93 (0***) 3 1.51 (0.24) 2.02 (0.36) 9.96 (0.23) 2
RGARCH-SSTD-RRV 8.03 (0**) 8.05 (0.02*) 38.73 (0***) 5 31.13 (0***) 31.95 (0***) 110.15 (0***) 7
RGARCH-GED-RRV 8.03 (0**) 8.05 (0.02*) 39.41 (0***) 7 31.13 (0***) 31.95 (0***) 110.54 (0***) 6
RGARCH-NIG-RRV 8.03 (0**) 8.05 (0.02*) 38.79 (0***) 6 31.13 (0***) 31.95 (0***) 110.69 (0***) 5
P-value of MCS 0.29 0.65
WPD-DCS 0.97 3.11 (0.08) 3.11 (0.21) 1.45 (0.98) 1 0.29 (0.59) 0.62 (0.73) 1.98 (0.96) 1
RGARCH-SSTD-RV 7.87 (0.01*) 9.23 (0.01*) 76.02 (0***) 4 2.53 (0.11) 2.7 (0.26) 84.94 (0***) 4
RGARCH-GED-RV 7.87 (0.01*) 9.23 (0.01*) 75.87 (0***) 3 2.53 (0.11) 2.7 (0.26) 84.94 (0***) 3
RGARCH-NIG-RV 7.87 (0.01*) 9.23 (0.01*) 75.79 (0***) 2 1.55 (0.21) 1.88 (0.39) 17.53 (0.01*) 2
RGARCH-SSTD-RRV 14.41 (0***) 14.43 (0***) 71.93 (0***) 6 4.03 (0.04*) 4.51 (0.1) 84.88 (0***) 6
RGARCH-GED-RRV 14.41 (0***) 14.43 (0***) 72.74 (0***) 7 4.03 (0.04*) 4.51 (0.1) 84.88 (0***) 5
RGARCH-NIG-RRV 7.87 (0.01*) 9.23 (0.01*) 76.82 (0***) 5 4.03 (0.04*) 4.51 (0.1) 84.88 (0***) 7
P-value of MCS 0.24 0.28
WPD-DCS 0.99 1.03 (0.31) 1.03 (0.6) 0.47 (1) 1 6.15 (0.01*) 6.15 (0.05) 3 (0.89) 1
RGARCH-SSTD-RV 14.26 (0***) 15.37 (0***) 214.41 (0***) 3 5.71 (0.02*) 7.01 (0.03*) 18.71 (0.01*) 4
RGARCH-GED-RV 19.22 (0***) 20.57 (0***) 243.27 (0***) 4 5.71 (0.02*) 7.01 (0.03*) 18.71 (0.01*) 3
RGARCH-NIG-RV 14.26 (0***) 15.37 (0***) 214.15 (0***) 2 5.71 (0.02*) 7.01 (0.03*) 18.71 (0.01*) 2
RGARCH-SSTD-RRV 19.22 (0***) 20.57 (0***) 246.51 (0***) 6 49.68 (0***) 49.68 (0***) 494.22 (0***) 7
RGARCH-GED-RRV 19.22 (0***) 20.57 (0***) 246.12 (0***) 5 49.68 (0***) 49.68 (0***) 494.2 (0***) 6
RGARCH-NIG-RRV 19.22 (0***) 20.57 (0***) 247.02 (0***) 7 49.68 (0***) 49.68 (0***) 494.68 (0***) 5
P-value of MCS 0.22 0.23

Note: ∗, ∗∗, and ∗∗∗ represent statistical significance levels of 5%, 1%, and.1%, respectively and bold text indicates rejections at the * probability level.

Fig. 5. Comparison of out-of-sample VaR forecasts between the 30 min-WPD-DCS-based and RGARCH-based methods in the U.S. stock market. 
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for extreme returns, thereby avoiding the serious consequences 
caused by underestimating the risk. The appropriate form of the GD 
specified for returns and the incorporation of HF data, along with the 
delicate mechanism of estimating the dynamic parameters, are three 
indispensable parts of this approach. Hence, we believe this novel 
tool promotes the accuracy of VaR forecasts and thus contributes to 
financial risk management.

5. Conclusion

The purpose of this paper is to develop a new parametric ap
proach to improving VaR forecasts and thus contribute to risk 
management. We propose the GD-DCS-VaR model, which is a 
method of directly using intraday returns to estimate the conditional 
distribution of daily returns. Daily returns can be obtained by 
summing the intraday returns estimated by a generalized-distribu
tion-based model driven by the conditional score. The bootstrap 
method makes the simulation of daily returns feasible, and the 
empirical analysis demonstrates the effectiveness and tractability of 
this novel approach.

Overall, our study provides a complete and standard paradigm 
for improving the parametric VaR prediction model, enriching the 
theoretical understanding of risk management tools. First, we re
produce the derivation process of a class of GDs. Second, we con
struct a DCS framework on these GDs to emphasize its practicability. 
Third, we highlight the contribution of intraday information in fit
ting daily returns and predicting daily VaR by conducting empirical 
evidence in both China’s stock market and the U.S. market. The 
contributions of this paper also include proposing a complete 
schema to generate new generalized distributions, which may en
lighten readers to develop much generalized distributions rather 
than just the ones mentioned in the paper.In the future, we expect to 
extend this line of thinking and to solve tough problems, such as 
dealing with intraday returns that are seriously correlated. We may 
consider the GD-DCS-VaR model that incorporates copula to give a 
more applicable scheme.
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