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Abstract
Exploring the synchronicity between time series, especially the similar patterns during extreme
events, has been a focal point of research in academia. This is due to the fact that such special
dependence occurring between pairs of time series often plays a crucial role in triggering emergent
behaviors in the underlying systems and is closely related to systemic risks. In this paper, we
investigate the relationship between the synchronicity of time series and the corresponding
topological properties of the cross-recurrence network (CRN). We discover a positive linear
relationship between the probability of pairwise time series event synchronicity and the
corresponding CRN’s clustering coefficient. We first provide theoretical proof, then demonstrate
this relationship through simulation experiments by coupled map lattices. Finally, we empirically
analyze three instances from financial systems, Earth’s ecological systems, and human interactive
behavioral systems to validate that this regularity is a homomorphic law in different complex
systems. The discovered regularity holds significant potential for applications in monitoring
financial system risks, extreme weather events, and more.

1. Introduction

Time series data mining has long been a widely researched topic [1–4]. One of its subfields focuses on
evaluating the synchronization and dependence between time series, assessing the degree to which a given
time series is similar or correlated with another. Considering individual time series as elements in a system,
the dependence between elements often leads to emergent behaviors in the system [5–8]. Particularly, the
dependence or synchronous patterns between the extreme values in time series deserve much more attention
as it is often associated with revealing systemic risks [9–11]. Traditional methods for analyzing the
relationship between two time series typically employ linear measures such as Euclidean distance and
Pearson correlation coefficient. However, time series in real complex systems often exhibit nonlinear
similarity and dependence, and the complex dynamical mechanisms underlying time series are difficult to
capture solely based on values of a single observation. Therefore, there is a compelling demand for
investigating more comprehensive nonlinear measures for time series in order to unveil the synchronicity
between pairwise time series, particularly during occurrences of extreme events. Traditional linear measures
exhibit notable constraints in this regard, whereas techniques such as recurrence plots (RPs) and complex
networks serve as potent nonlinear approaches for elucidating the intricate dynamical mechanisms inherent
in time series. The former enables the extraction of underlying dynamical properties in short or
non-stationary time series, while the latter facilitates the mapping of time series onto networks and the
representation of original sequence attributes using network statistics.

Eckmann et al first introduced the concept of RPs, highlighting the recurrence of states as a fundamental
attribute of every dynamic system [12]. Based on this attribute, RP was developed as a two-dimensional
visualization tool. Over the past two decades, RP has evolved into a nonlinear method for describing
complex dynamics [13]. RP represents a graphical representation of a binary symmetric matrix, encoding the
times when two states are very close (i.e. neighbors in phase space). The core idea is to reconstruct the
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attractor from the time series using the delay embedding method [14]. If the metric distance between two
points on the reconstructed attractor is less than or equal to a threshold, it is considered a state reoccurred.
All recurrence of trajectory points can be represented by a two-dimensional graph, with each point
indicating whether the corresponding trajectory point has a recurrence. RP provides abundant information
about the underlying dynamical properties of the system. By analyzing the recurrence matrix, information
about the system’s dynamics can be extracted and quantified using techniques like recurrence quantification
analysis (RQA) [15]. Additionally, RP-based techniques can analyze short and non-stationary data, making
them highly applicable to studying real-world data [16]. Although there is not a precise definition in
academia for the length of so-called ‘short’ time series, recurrence-based methods have found extensive
application in fields facing data acquisition challenges like geology, paleoclimatology, physiology, among
others. Research in these areas, employing simulation and empirical evidence, has demonstrated the
effectiveness and robustness of recurrence-based methods when analyzing short time series with lengths
greater than 100 but not exceeding 500 [12, 15, 17–19]. Therefore, this paper will also employ empirical
studies using sample sequences within this range of lengths.

In recent years, significant progress has been made in developing methods for complex system analysis
based on RP. However, since RP is typically used to analyze the recurrence patterns of a single time series,
further extensions are required to analyze the similar patterns between pairwise time series. Marwan et al
proposed the concept of cross-RPs (CRP) [13], which simultaneously embeds two time series into phase
space and compares their dynamic behaviors [20]. The cross-RP (CRP) displays all times when the state of a
dynamic system occurs simultaneously in the second dynamic system, providing a two-dimensional
cross-recurrence matrix. In other words, CRP shows all the times when the phase space trajectory of the first
system is roughly the same as the trajectory in the phase space of the second system. Similarly, quantification
tools based on CRP, such as cross-RQA (CRQA), can measure how and to what extent two time series exhibit
similar patterns. This analysis framework was initially developed and widely used in natural sciences, such as
heart rate variability, seismology, and chemical fluctuations, among other fields [13, 20]. In psychology, it
has found extensive applications in the field of motor control [21–23]. Richardson et al provided a broader
context for the method in the domains of dynamical systems and psychology [24]. It has also been applied to
capture dynamic patterns between individuals, for example, uncovering interaction behaviors during
goal-oriented tasks [25] or conversations [26]. In these applications, the time series of interest can be factorial
data describing body sway or eye movement states, as well as numerical data such as heart rate [21, 26, 27].

Due to the ability of complex networks to capture both local and global properties, they have become
instrumental in understanding the complex relationships and information flow among different components
in extended systems [16]. Complex networks have gained considerable popularity in analyzing complex,
particularly spatially extended systems [28, 29]. Additionally, because the CRP plot provides an adjacency
matrix, it can serve as a basis for constructing a complex network. Therefore, by utilizing the cross-RP as an
intermediary, it becomes possible to map pairwise nonlinear time series onto a network, enabling the use of
network analysis tools instead of traditional methods for time series analysis. Donner et al demonstrated the
fundamental relationship between the topological properties of the recurrence network and the statistical
properties of attractor densities in the underlying dynamical system [30]. This complements the existing
RQA by incorporating network descriptions as new quantitative features of the dynamic complexity of time
series. Recurrence networks and related statistical measurements have also become important tools for
analyzing time series data [31]. However, to the best of our knowledge, statistical metrics of cross-recurrence
networks (CRNs) have received little attention and have not been widely utilized to assist in the analysis of
the original time series. As we are interested in capturing certain types of cross-correlation or dependence
between pairwise time series, which are often not accurately captured by traditional linear analysis tools such
as Pearson correlation coefficients, we construct CRNs based on the original sequences. We establish a
connection between the statistical features of the CRN and the original time series, aiming to reveal the
coupling relationships of the original sequences using statistical metrics derived from the established
network.

Inspired by Wallot et al [27], we observe the statistical metrics of CRNs established from pairwise time
series and the properties of the time series themselves. Through our theoretical derivations, we discover a
significant positive linear correlation between the clustering coefficient of the CRN and the synchronicity of
the pairwise time series. To validate this regularity, we consider multicomponent dynamical systems and
employ the coupled map lattices (CML) technique to simulate multidimensional time series with coupling
relationships. By varying the coupling strength between the sequences, we find that there exists a strong
linear relationship between the synchronicity of pairwise sequences and the clustering coefficient of their
corresponding CRNs. The simulation results confirm our findings. Furthermore, we conduct empirical
analyses in financial systems, Earth systems, and human interactive systems. We find strong universality of
this regularity in time series from different complex systems, indicating it as a homomorphic law. Due to the
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relatively stable topological structure of recurrence networks and their applicability to short time series, the
regularity uncovered in this study reveals the relationship between statistical metrics of complex networks
derived from time series mapping and event synchronicity. Thus, it holds significant practical implications
for real-time monitoring of future financial risks, natural crises, or human behavior using CRNs, particularly
when faced with limited data.

The remaining sections are organized as follows: section 2 provides an introduction to the fundamental
methods of RPs and cross-RPs (CRP), along with their corresponding statistical metrics. Additionally, it
discusses the network metrics derived from RP and CRP. In section 3, a theoretical derivation is presented to
establish the mathematical relationship between the clustering coefficient of the CRN and the probability of
synchronicity. Section 4 validates this relationship by employing the CML technique to simulate coupled
multidimensional time series. Section 5 presents empirical evidence using real-world financial time series,
rainfall time series, and eye-tracking sequences during human interactions. These empirical analyses aim to
demonstrate the homomorphic nature of the discovered regularity across diverse complex systems. Finally,
section 6 provides a summary and conclusion of the paper, highlighting the key findings and contributions.

2. Method

A RP is a graphical representation of the recursive states of a dynamical system in itsm-dimensional phase
space. For all phase space vectors−→xi

(
i = 1, . . . ,N,−→xi ∈Rm

)
, a pairwise measurement based on distance is

performed:

Ri,j =Θ
(
ε− d

(−→xi ,−→xj )) , (1)

whereΘ(·) is the Heaviside function, ε represents the threshold of closeness, and d
(−→xi ,−→xj ) is the measure of

closeness. Different measures can be used to quantify closeness, such as spatial distance, string metrics, or
local rank orders [13, 32]. In most cases, spatial distance is considered using the Euclidean distance, where
d
(−→xi ,−→xj )= ∥−→xi −−→xj ∥. In the binary recurrence matrix R, if the distance ∥−→xi −−→xj ∥ is less than ε, the

corresponding Ri,j is set to 1. The phase space trajectories can be reconstructed from the time series {ui}Ni=1

using time-delay embedding [33]:

−→xi =
(
ui,ui+τ , . . . ,ui+τ(m−1)

)
, (2)

wherem represents the embedding dimension and τ represents the time delay. And {ui}Ni=1 represents the
observed values of the time series variable of interest, derived from our collected data samples. Optimal
values form and τ can be determined by calculating the average mutual information (AMI) function and the
false nearest neighbors (FNN) function, ensuring the coverage of all free parameters and avoiding
autocorrelation effects [34]. Specifically, FNN can be computed for different embedding dimensions, and the
optimal embedding dimension is chosen as the first local minimum or the dimension that corresponds to a
smooth curve. Similarly, for time delay, AMI is calculated for different time lags, and the optimal time lag is
selected as the first local minimum value of AMI. Let us illustrate the meaning of equation (2) with a simple

example. Suppose the series
{−→xi }N

i=1
represents the actual phase space vector series of a variable.

Considering {ui}Ni=1 as observations from one dimension, unable to fully reflect the variable’s true dynamical

characteristics, we employ delaying and embedding for {ui}Ni=1 for phase space reconstruction. Assuming the
optimal embedding dimensionm= 3 and optimal delay τ = 1, we aim to obtain the first-order lagged
sequence of {ui}Ni=1, {ui+1}Ni=1, as observations for the second dimension, and subsequently, the first-order

lagged sequence of {ui+1}Ni=1, {ui+2}Ni=1, as observations for the third dimension. After this embedding

process,
{−→xi }N

i=1
becomes a three-dimensional sequence, where each vector−→xi is obtained from

observations in three dimensions: (ui,ui+1,ui+2) for i = 3, . . . ,N. Due to the lagged operation, the number
of points with observations in all three dimensions reduces from N to N− (m− 1). Thus, d

(−→xi ,−→xj )
represents the distance between points i and j in this three-dimensional space. If the reconstruction of phase
space is not performed, i.e.m= 1, d

(−→xi ,−→xj ) signifies the absolute difference between ui and uj in the {ui}Ni=1

sequence. We use a simple schematic diagram in figure 1 to illustrate the above process.
However, our study primarily focuses on identifying cross-recurrence patterns among pairwise time

series variables in multivariate systems, necessitating equal lengths. Due to variations in the optimal
embedding dimensions and delays for each time series, ensuring equal lengths for any pairwise sequences
after phase space reconstruction is challenging. Therefore, for simplicity, we do not perform embedding of
the original series {ui}Ni=1 by defaulting tom= 1. Consequently, the equation (2) can be written as−→xi = ui
in our case, and the process shown in figure 1 is not involved. This practice aligns with common approaches
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Figure 1. Schematic diagram of delay and embed.

in studying multivariate systems where multivariate analysis itself offers a better description of a system’s
evolutionary features compared to univariate analysis [35].

Clearly, in RP, there is an evident diagonal line representing the recurrence of each point with itself. If
spatial distance is used as the criterion for recurrence, RP is symmetric. Small-scale features in RP can be
observed through diagonal and vertical lines, and the morphology of these special lines reflects the dynamics
of the system. Following a heuristic approach, Zbilut and Webber [15] introduced a quantitative description
of RP based on these line structures, known as RQA. RQA defines measures such as diagonal line length,
recurrence rate (RR), determinism (DET), average length of diagonal structures, and entropy to characterize
the diagonal segments in the RP. Table 1 presents these measures and their definitions.

The RP is extended to the CRP, which compares the dynamic behavior of two time series simultaneously
embedded in phase space [13]. Specifically, for each point in the first trajectory−→xi (i = 1, . . . ,N,−→xi ∈Rm),
and each point in the second trajectory y⃗ (j = 1, . . . ,N,−→yj ∈Rm), the distance measure d

(−→xi ,−→yj ) is
calculated, resulting in an N×Nmatrix indicating their closeness:

CRi,j =Θ
(
ε− d

(−→xi ,−→yj ))=Θ
(
ε−∥−→xi −−→yj ∥

)
. (3)

CRP is the two-dimensional plot generated from the binary cross-recurrence matrix CR. In CRP, long
diagonal line structures reveal synchronization between the two time series in phase space. Corresponding
RQA measures are redefined, where RR, DET, and mean diagonal line length (MEAN_DL) are functions of
the distance from the main diagonal [13]. This indicates that CRP can explore the dynamical similarity of the
two sequences in the presence of time delays. For example, in CRP, the diagonal-wise RR focuses only on the
recurrence along the diagonal and is defined as:

RRk =
1

N−k

∑
j−i=k

CRi,j, (4)

where k represents the time delay between the second trajectory y⃗ and the first trajectory−→xi , and k can be
positive or negative. In practical research, the optimal time delay, k, which maximizes RRk, indicates the best
delay for exhibiting the highest similarity between the two sequences.

The graphical properties of RP and CRP reflect the dynamic patterns of the sequences. When
transformed into complex networks, the adjacency matrices derived from the recurrence matrix R and the
cross-recurrence matrix CR can further reveal the self-similarity and mutual similarity patterns of the
sequences. Various metrics commonly used to measure the topological structure of complex networks are
listed in table 2.

These metrics provide insights into the properties of recurrence networks, capturing characteristics such
as clustering, connectivity, average degree, average path length, and centrality measures. They help quantify
the structure and importance of vertices within the recurrence network. Donner et al [30] established a
connection between the properties of recurrence networks and the phase space topology of dynamic systems
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Table 1.Main qualification analysis metrics of recurrence plots.

Measurement Definition Explanation

The number of recurrence points
(RP_N)

The number of recurrent points in the
RP plot

Recurrence rate (RR) The proportion of recurrent points in the
RP plot

It represents the ratio of recurrent points
to all points, indicating the probability of
specific recurrent patterns.

Determinism (DET) The percentage of recurrent points
forming diagonal lines in the RP plot,
given a minimum diagonal line length
threshold

It reflects the extent to which
deterministic behavior dominates the
system, as random behavior leads to
shorter diagonal lines while deterministic
behavior results in longer diagonal lines.
Thus, the ratio of recurrent points
forming diagonal structures to all
recurrent points serves as an indicator of
the determinism of a system.

Mean diagonal line length
(MEAN_DL)

The average length of diagonal lines in
the RP plot

Diagonal structures in the RP plot
indicate segments of trajectories that are
close to each other at different time
points. The length of diagonal line
represents the duration of their closeness.

Entropy of diagonal line length
distribution (ENT_DL)

The entropy of the distribution of
diagonal line lengths

It measures the Shannon entropy of the
histogram of diagonal line lengths,
reflecting the complexity of deterministic
structures in the system.

Laminarity (LAM) The percentage of recurrent points
forming vertical lines in the RP plot,
given a minimum vertical line length
threshold

It measures the extent of deterministic
behavior in the system by evaluating the
ratio of recurrent points forming vertical
structures to all recurrent points.

Trapping time (TT) The average length of vertical lines in the
RP plot

Vertical line structures indicate segments
of trajectories that stay close to specific
points in another trajectory. The
trapping time represents the duration of
their closeness.

Table 2.Main metrics of recurrence networks.

Measurement Explanation

Clustering coefficient (CC) It describes the extent to which vertices in a network form
clusters

Edge density (Edge_Density) It characterizes the density of connections between vertices
in the network

Average degree (MEAN_DEG) It represents the average number of edges per vertex

Average path length (MEAN_PL) It represents the average shortest path length between all
pairs of vertices in the network

Graph-level betweenness centralization (CENTAL_BET) It measures the importance of vertices at the graph level
based on the number of shortest paths passing through
them

Graph-level degree centralization (Central_DEG) It measures the importance of vertices at the graph level
based on their degrees

represented by RPs. However, their work primarily focused on demonstrating the fundamental relationship
between the statistical properties of the underlying dynamical system and the topological properties of the
corresponding recurrence network. In contrast, this paper emphasizes the relationship between the statistical
metrics of CRNs and the probability of pairwise time series experiencing synchronized ‘events’. The objective
is to utilize the network’s topological structure to reveal the likelihood of synchronization risks or states
occurring between two time series. This approach offers an alternative perspective for understanding and
mitigating synchronization risks among multiple entities.
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3. Theoretical derivation

In our study, we observe the common statistical metrics of CRN, as listed in table 2, in relation to the
proportion of synchronized states between pairwise time series. We find a deterministic linear relationship
between the clustering coefficient and the occurrence of synchronized events (i.e. relatively extreme states).
We will present further details and characteristics of the CRN in this section, and then derive the theoretical
basis for the pattern we have discovered. To simplify the process of determining the threshold for recurrence
when constructing the recurrence network, we transformed the numerical time series into categorical time
series based on the relative magnitudes of their observed values. Specifically, assuming equal probability of
the occurrence of each state, by increasing percentile levels at fixed increments from 0% to 100%, we can
obtain n+ 1 percentiles from the pseudo-sample distribution of the numerical time series of length N.
Consequently, this partition yields n ranges, where the sample values falling within these ranges are classified
into n states. These n states can be ordered according to the relative sizes of their corresponding ranges.
Hence, the final state space can be designated as (a1,a2, . . . ,an)(1⩽ n⩽ N), facilitating the identification of
so-called extreme states due to its inherent orderability. The choice of n should neither be too small nor too
large; if it is too small, the probability of occurrences of a1 or an will be significantly higher than that of
extreme events. Conversely, if it is too large, each state will occur with lower frequency, resulting in very few
edges in the CRN and making it challenging to extract useful information. Considering the application of
recurrence-based methods on shorter time series, an empirical range for n could be between [10, 20].

Consider a two-dimensional time series {Xt,Yt; t⩾ 0}, where the components have the same state space
(a1,a2, . . . ,an)(1⩽ n⩽ N). With a set of observation samples of length N, (x1,y1) , . . . , (xN,yN), we can
construct a CRN for these two time series variables. Specifically, we designate the Nmoments as network
vertices, denoted as V= (1,2, . . . ,N). The cross-recurrence matrix R=

{
Aij

}
N×N

is constructed based on
whether the respective states at two moments, one from each time series, are the same or not, defined as
follows:

Aij =

{
1 xi = yj
0 xi ̸= yj

i, j = 1, . . . , N . (5)

Clearly, this matrix is not symmetric; generally, Aij ̸= Aji. As defined above, the determination of states is
done from the perspective of Xt, where the state of each moment in Xt is compared sequentially to that of
every moment in Yt. If the matrix is constructed from the perspective of Yt, the comparison is done similarly,
and the resulting cross-recurrence matrix is denoted as R* =

{
Bji

}
N×N

, where:

Bji =

{
1 yj = xi
0 yj ̸= xi

i, j = 1, . . . , N . (6)

Hence, we have Aij = Bji, establishing the relationship between R and R* as transpose matrices, i.e.,
RT = R*.This property is demonstrated graphically in figure 2.

When establishing the CRNs, since our primary interest lies in determining whether there is a connection
between nodes rather than focusing on the directionality or weight of these connections, we obtain
symmetric adjacency matrices, R ′ and R* ′, based on R and R*. And then the CRNs are constructed by these
symmetric adjacency matrices. Consequently, the resulted network is undirected and unweighted. Moreover,
this network includes self-loops, denoted as Aii = 1 when xi = yj=i = ak, (i = 1, . . . ,N;k= 1, . . . ,n).

Within the constructed CRN, we observed a particular property: the clustering coefficient of this network
is positively correlated with the probability of synchronous states between the two time series, i.e. the
synchronization probability. This relationship is expressed as:

C= P(X= Y) , (7)

where C represents the global clustering coefficient of the CRN, and (X = Y) signifies the simultaneous
occurrence of identical states in both time series. The proof of this relationship is as follows:

Let v be any vertex in the CRN, and Cν be the local clustering coefficient of that vertex. Since the
adjacency matrix corresponding to the CRN is symmetric, when analyzing the actual meaning of the
network’s edges eij (i, j = 1,2, . . . ,N), it is reasonable to consider either Aij = 1 or Aji = 1. Therefore, the
definition formula for the local clustering coefficient can be written as:

6
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Figure 2. Cross-recurrence matrices constructed from the perspectives of Xt and Yt as primary viewpoints. Assuming the state
space of {Xt,Yt; t ⩾ 0} is (a1= ‘A’,a2 = ‘B’,a3 = ‘C ’,a4 = ‘D’), where N= 8. Samples of Xt and Yt are presented sequentially
from left to right.

Cν = P
(
Aij = 1|Avi = 1,Avj = 1

)
= P

(
xi = yj|xv = yi,xv = yj

)
=

n∑
k=1

P
(
xi = yj = ak|xv = yi = yj

)
=

n∑
k=1

P
(
xi = yi = ak|xv = yi = yj

)
= P

(
xi = yi|xv = yi,xv = yj

)
. (8)

This equation demonstrates that the local clustering coefficient of CRN is equal to the conditional
probability of synchronization between two time series. Particularly, when the states of the two-dimensional
time series at different moments are mutually independent, we have:

Cν = P
(
xi = yi|xv = yi,xv = yj

)
= P(xi = yi) = P(X= Y) . (9)

Under this condition, the local clustering coefficient equals the unconditional synchronization
probability of the two time series. However, assuming the independence of the states of the two-dimensional
time series at different moments is a strong assumption, indicating that this two-dimensional time series is
independently and identically distributed (i.i.d.) sequences. In reality, when the auto-correlation and
cross-correlation functions of the two time series decay exponentially, i.e. there’s only short-term correlation
within and between the time series, we can derive an approximate relationship: Cν ≈ P(X= Y).

It can be observed that the local clustering coefficient of any vertex in the network is determined by a
same term. Consequently, the global clustering coefficient C can be obtained as the average of all local
clustering coefficients:

C=
1

N

N∑
v=1

Cv = P
(
xi = yi|xv = yi,xv = yj

)
(10)

C= P(X= Y) holds if the strong independence assumption is met, and C≈ P(X= Y) when the
correlations are weak or decay rapidly over time. Under the strong independence assumption, if we are more
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concerned about the synchronization probability of extreme events, that is, the probability of the
co-occurrence of the extreme states in the two series, the above equation can be further decomposed as:

C= Cν = P(X= Y)

=
n−1∑
k=1

P(xi = yi = ak)+ P(xi = yi = an)

= P0 + P1, (11)

where P0 =
n−1∑
k=1

P(xi = yi = ak), and P1 = P(xi = yi = an). P1 represents the probability of extreme event

synchronization, while P0 denotes the probability of the synchronization of other states. Clearly, while
maintaining P0 constant, the variation in P1 is directly proportional to C. This derivation demonstrates two
key points: firstly, the clustering coefficient of a CRN established between two time series is equal to the
synchronization probability when the states of the two-dimensional time series at different moments are
independent; secondly, the clustering coefficient is linearly correlated to the synchronization probability of
extreme event, whether the strong independence assumption is satisfied or not.

From a physical perspective, the synchronization of two time series is determined by the coupling
strength between their respective attractors. In general, if the coupling strength is increased, the
synchronization between the time series is enhanced, leading to a higher clustering coefficient in the CRN of
the two time series. Although Chen et al [36] also emphasized that the relationship between coupling
strength and synchronization can be complex and nonlinear, and it might depend on the specific
characteristics of the coupled systems. The coupling strength remains a crucial variable that plays a
significant role in altering the synchronization between time series. In the next section, we will employ
simulation experiments to further demonstrate the findings mentioned above.

4. Simulation experiments

From a physical perspective, the synchronization of two time series can be understood as the effect of
coupling between their respective attractors, manifested as the dependence between the states of the time
series. In this paper, we consider CMLs, which are simple spatiotemporal chaotic models widely used for
modeling complex spatiotemporal dynamics. Generally, their form is given by:

x[κ]t+1 = (1− ζ) f
(
x[κ]t

)
+ ζh[κ]t , (12)

where x[κ]t can be understood as the value of the κth sequence at time t (κ= 1,2, . . . ,M,M denotes the

dimension of the multivariate time series), and h[κ]t represents the interaction of the elements from other
time series at time t on the elements of the κth sequence. The first term on the right side represents the
internal chaotic dynamics determined by the nonlinear mapping function f(x), while the second term
represents the mutual coupling effect generated by the coupling parameter ζ (0< ζ < 1). Generally, CMLs

have three types of coupling: local, direct-neighbor coupling, where h[κ]t = f(x[κ+1]
t ) or h[κ]t = f(x[κ−1]

t );

global coupling, where h[κ]t = 1
M

∑M
κ f(x[κ]t ); and intermediate-range coupling, where

h[κ]t = 1
2K+1

∑K
k=−K f(x

[κ+k]
t ). In this experiment, following the approach of Lacasa et al [37] and Eroglu et al

[35], we consider theM-dimensional time series asM points on a ring model. With this approach, the
dynamic evolution of each point x[κ] is determined by the internal chaotic evolution and the average
coupling effect between neighboring points, resembling a form of direct-neighbor coupling:

x[κ]t+1 = (1− ζ) f
(
x[κ]t

)
+ ζ

2

[
f
(
x[κ−1]
t

)
+ f

(
x[κ+1]
t

)]
(κ= 1, . . . ,M) . (13)

This coupling mechanism ensures that the simulated sequences only exhibit short-range correlations, as
the single simulated value only couple with its neighbors. As ζ varies, the system is trapped in different
attractors, leading to different degrees of synchronization and dynamical phases. Although ζ does not
directly reflect the synchronization between time series, it acts as a coupling strength parameter that alters
the synchronization between time series. Thus, we can observe the relationship between the synchronization
probability of each pair of time series and the clustering coefficient of the corresponding CRN under
different values of ζ in the system.
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Figure 3. The relationship between synchronization probabilities and cluster coefficients of cross-recurrence network in one of
the simulation experiments (the initial values of five simulated series in CML system are 0.083, 0.4088, 0.5153, 0.3969, 0.2227 in
this experiment) in the presence of noise.

The classic logistic mapping function f(x) = 4x(1− x) is adopted as the internal chaotic dynamics
mechanism to represent the underlying dynamics of the system and the system is assumed to be in a
five-dimensional phase space (M= 5). The coupling parameter ζ is set within the range [0, 0.4], with an
increment of △ ζ = 0.005 to investigate the effect of different coupling strengths. Due to the sensitivity of
chaotic systems to initial conditions, small variations in the initial values can lead to significantly different
system structures. To capture the prominent avalanche effect, we iterate the system 15 000 times and use the
last 10 000 simulation values for analysis. Although ample previous research confirms the robustness of
recurrence-based methods in the presence of noise [19, 31, 38], to demonstrate the stability of the identified
homomorphic regularity across different signal-to-noise ratios (SNRs), we will add varying levels of noise to
the above simulated series. During each experiment, we introduce white noise (following a Gaussian
distribution with a standard deviation of 1 and mean of 0) into the five simulated sequences within the CML
system, setting SNRs at 2, 5, 10, and 20, representing 50%, 20%, 10%, and 5% noise addition, respectively.
Then we factorize each time series into ten states based on the relative magnitudes of their values. We
establish CRNs for the updated series and compute the clustering coefficients and synchronization rates.
With multiple sample results under the coupling parameter ζ , we perform linear fitting on the sample series
of clustering coefficients and synchronization probabilities, yielding parameter estimates (slope and
intercept) for first-order linear regression. Through 100 iterations of the aforementioned setup, we derive
pseudo-sample distributions of slopes and intercepts for different random initial values. Based on these
pseudo-distributions, we establish 95% confidence intervals for the slope and intercept estimates. The
criterion for assessing the strong linear correlation between CRN clustering coefficients and synchronization
probabilities relies on whether the slope 1 and intercept 0 fall within the respective confidence intervals. It is
worth noting that under certain ζ values, the simulation sequences may evolve into a few fixed values,
leading to a reduced number of distinct states, possibly fewer than ten. In such cases, when computing the
synchronization probability and constructing the CRN for any two time series, we adopt the number of states
with the least partition from both time series as the reference. This ensures an equal number of distinct states
in each series of a pair.

Figure 3 illustrates the relationship between CRN clustering coefficients and synchronization
probabilities at various SNRs, including a noise-free scenario for comparison. Remarkably, even at a SNR of
2, representing a 50% noise addition, the robust linear relationship between CRN clustering coefficients and
synchronization probabilities persists. The fitted slope tends closer to 1 when noise is minimal or absent.
Meanwhile, figure 4 presents the pseudo-sample distributions of parameter estimates from the fitted linear
models at different SNRs. As noise increases, the pseudo-sample distribution of slopes gradually skews right;
however, a significant portion of slope estimates remains within proximity to 1. Similarly, the distribution
pattern of the intercept did not exhibit systematic changes with alterations in the noise. Table 3 displays the

9
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Figure 4. Distribution of the results obtained from the univariate regression model examining the relationship between the
synchronization probability of two sequences and the clustering coefficient of the cross-recurrence network in the presence of
noise. The results are based on 100 simulation experiments.

Table 3. The limits of 95% confidence intervals for slope and intercept estimates across different scenarios.

Simulated series

Slope Intercept

Lower limit of
confidence interval

Upper limit of
confidence interval

Lower limit of
confidence interval

Upper limit of
confidence interval

50% noise (SNR= 2) 0.9900 1.0489 −0.0075 0.0657
20% noise (SNR= 5) 0.9847 1.0287 −0.0096 0.0597
10% noise (SNR= 10) 0.9813 1.0144 −0.0090 0.0578
5% noise (SNR= 20) 0.9823 1.0135 −0.0079 0.0456
Without noise 0.9681 1.0472 −0.0472 0.0319

95% confidence intervals for slope and intercept estimates across different scenarios, showcasing that the
slopes 1 and intercepts 0 fall within the corresponding intervals irrespective of the noise levels. This
observation suggests the insensitivity of the relationship between CRN clustering coefficients and
synchronization probabilities to some extent, regardless of the noise present. Therefore, we have valid reasons
to believe that the observed regularity remains effective even in empirical series with varying degrees of noise.

5. Empirical analysis

In the empirical study, we will focus on verifying the homogeneity of the linear relationship revealed by
equation (11) in different systems, as event synchronization is often a crucial factor in triggering systemic
risks. We will also examine the performance of the equivalence between the clustering coefficient in CRN and
the unconditional synchronization probability in actual data. We select price time series from the financial
system, rainfall data from the Earth’s ecosystem, and eye-tracking sequences from human interactive
behavior as empirical objects. For each system, we establish CRNs for all pairwise time series and calculate
their global clustering coefficients. Subsequently, we obtain the occurrence ratio of synchronous extreme
events for each pair of sequences, aiming to verify whether there exists a significant positive linear correlation
between the global clustering coefficient and the ratio of event synchronization.

5.1. Financial system
5.1.1. Data
The stock data from the two major trading markets in China, namely, the Shanghai Stock Exchange and the
Shenzhen Stock Exchange is considered empirical objects. We select constituent stocks from the Shanghai
Composite Index (SH000001) and the Shenzhen Component Index (SZ399001) based on their market
capitalization weights arranged in descending order. Our focus is on choosing stocks with complete trading
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data to ensure data integrity and reliability. Ultimately, we identify 56 stocks from the Shanghai Composite
Index and 34 stocks from the Shenzhen Component Index that have complete trading data from 4 January
2015, to 30 October 2020. The data is divided into two parts: the training set (from 2015 to 2019) and the test
set (2020). The data length of each time series is denoted as N, resulting in an N×N recurrence matrix when
establishing the CRNs or CRPs. It is worth noting that a large N is not suitable for constructing CRNs or
CRPs due to the computational complexity. Considering that financial returns often exhibit yearly cyclical
changes, we will use the daily return data from 2015 to 2019 to build CRNs for each year separately. And the
length of the sample data of each year falls within the range of 200–240. Subsequently, we will calculate the
ratio of daily coexceedances of pair stocks within a year to verify the robustness of the relationship between
the topological structure of CRNs and the ratio of coexceedances of daily returns across different years.
Exceedances here refer to positive returns exceeding the 95th percentile and negative returns falling below the
5th percentile. And coexceedances specifically refer to exceedances in the pair stocks that occur at the same
moment or at the fixed lead-lag moments. Table A1 and A2 present the specific stock codes for the selected
stocks in the SH000001 and SZ399001, respectively.

5.1.2. Parameter setting
As described in section 3, establishing CRNs based on numerical data involves the selection of the radius
parameter. However, determining a suitable fixed radius is challenging, and there is currently no reliable
literature supporting a specific choice. In this context, our primary interest lies in the frequency of
occurrences of joint extreme returns between pairs of stocks Extreme values represent absolute values of
significantly positive and negative returns. We then discretize returns into ten equidistant states, ensuring a
uniform distribution of returns across these states. By converting the numerical variable into a factor
variable, recurrence is only considered to have occurred when the states are entirely consistent (radius= 0),
thereby avoiding the need for optimal parameter selection. Consequently, CRNs are established based on
factor variables. Since we consider the data of different constituent stocks as descriptions of different
dimensions within the financial system, we will no longer perform the reconstruction of the phase space in
the empirical analysis. Therefore, the embedding dimension is set to 1, and the time-lag value does not affect
the results when the embedding dimension equals 1.

5.1.3. Optimal delay between time series
In cross-RQA (CRQA), we can construct CRPs for all possible lags between pairs of sequences and extract
corresponding indicators, such as diagonal-wise RR, to explore the maximum ratio of state recurrence
between the two sequences at different time lags. This helps us investigate the delayed similarity patterns
between pairs of stock return sequences within the same financial system. If there exists a time delay that
maximizes the RR between two return sequences, we can reasonably assume that there are statistically
significant differences in their reaction speeds to the same financial events in the market. This information
can also guide us in establishing rules for identifying coexceedances, which means detecting exceedances in
two sequences either with a time delay or simultaneously.

Based on the data from each year in the training set, with a maximum delay of 10 (kmax = 10), we
construct all possible CRPs for any pair of factorized return series and observe the optimal delay that
maximizes the diagonal-wise RR. The results show that the optimal delay for any pair of sequences is 0,
indicating that the highest RR occurs when there is no lead-lag relationship in the pairwise daily return
series. Taking the daily returns of sh601398 and sh601288 in the Shanghai market and sz000027 and
sz000400 in the Shenzhen market in 2015 as examples, figure 5 shows the variation of diagonal-wise RR RRk

within the range of {k=±i}10i=1. The RRk curves for any other pair of sequences exhibit a similar pattern to
that in figure 5, where RRk reaches its highest relative value at k= 0.In other words, when there is no delay
between pairwise stock return series, there are more occurrences of the same state on the same day. Based on
this observation, when determining coexceedances, if exceedances occur in different assets on the same day,
we consider it as a case of coexceedance.

5.1.4. Relationship between CRP and CRN indicators and the ratio of coexceedances
In the absence of delay in the pairwise series, we construct the CRP and CRN separately and obtain the
commonly analyzed indicators in tables 1 and 2. Taking the results of 2015 as an example, we show the scatter
plots of any pair of stocks in the Shanghai market corresponding to the CRP indicators versus the ratio of
coexceedances in figure 6, and the CRN indicators versus the ratio of coexceedances in figure 7. The
corresponding plots figures A1 and A2 for the Shenzhen market are shown in the appendix.

In figure 6, there is no clear linear or nonlinear relationship observed between the CRP indicators and the
proportion of coexceedances. However, in figure 7, it can be observed that there is a positive linear
relationship between the average shortest path in the complex network established based on pairwise returns
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Figure 5. Diagonal-recurrence plots of the pairwise daily return series. (a) shows the variation of the diagonal-recurrence values
for the daily returns of sh601398 and sh601288 in 2015 with different time delays. (b) presents the variation of the
diagonal-recurrence values for the daily return sequences of sz000027 and sz000400 in 2015 with different time delays.

Figure 6. Relationship between the CRP indicators and the ratio of coexceedances of the constituent stocks in the Shanghai stock
market in 2015.

and the proportion of coexceedances between the returns of the two stocks. Additionally, there is also a
positive linear relationship between the network’s clustering coefficient and the ratio of coexceedances.

We validate these two relationships using the 5 year training set data separately. As shown in figure 8, the
linear relationship between the average shortest path and the ratio of coexceedances in individual stocks’
CRN networks in the Shanghai Composite Index is not consistently significant, such as in 2016 and 2017.
However, for each year’s data, there is a clear positive linear relationship between the clustering coefficient of
stocks’ CRN and the ratio of coexceedances. Figure 9 illustrates the corresponding relationships in the
Shenzhen Composite Index. It can also be observed that the linear relationship between the average shortest
path and the coexceedances is weaker than the linear relationship between the clustering coefficient and the
coexceedances. To further investigate these linear relationships, we conduct Pearson correlation tests and use
the Wilcoxon rank-sum test to verify if the clustering coefficient and the ratio of coexceedances follow the
same distribution. The results are presented in table 4. As indicated in the table, for constituent stocks in the
Shanghai market, the clustering coefficient of CRN from 2015 to 2019 is significantly and positively
correlated with the corresponding ratio of coexceedances. This strong correlation is evident as all the linear
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Figure 7. Relationship between the CRN indicators and the ratio of coexceedances of the constituent stocks in the Shanghai stock
market in 2015.

Figure 8. Relationships between the CRN clustering coefficient, average shortest path, and the ratio of coexceedances in the
Shanghai market for different years’ data.

correlation coefficients for each year are greater than 0.7. For constituent stocks in the Shenzhen market,
there is also a significant positive linear relationship between the CRN clustering coefficient and the ratio of
coexceedances from 2015 to 2019, but the strength of the relationship is weaker than that in the Shanghai
market. The correlation coefficients between the average shortest path of CRN and the ratio of coexceedances
in 2017 and 2019 are lower than 0.5.

Based on these findings, we conclude that only the clustering coefficient of the CRN for pairwise daily
returns shows a robust and strong positive linear relationship with the ratio of coexceedances. The Wilcoxon
rank-sum test results suggest that both in the Shanghai and Shenzhen markets, and for all years, the
clustering coefficient and the average shortest path of individual stocks’ CRN do not belong to the same
distribution as the corresponding proportion of coexceedances.

As mentioned earlier, mapping time series onto complex networks allows us to discover not only
correlations but also richer information and specific patterns. Besides extreme values in financial systems,
the relationships between extreme values in time series of other complex systems have been of interest to
researchers. To emphasize the universality of this pattern, in the following section, we will conduct separate
analyses on rainfall data from different regions in the climate system and eye-tracking data from human
interaction behavior.

Financial returns exhibit several stylized facts, one of which is long memory, characterized by long-range
autocorrelation in the absolute values of returns. This characteristic may interfere with the equivalence of C
and P(X= Y). Taking the example of data from the Shenzhen market, we segment the return series into 10
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Figure 9. Relationships between the CRN clustering coefficient, average shortest path, and the ratio of coexceedances in the
Shenzhen market for different years’ data.

Table 4. Results of correlation tests between the CRN indicators and the proportion of coexceedances.

Year

SH SZ

Pearson’s
correlation test

Wilcoxon
rank sum test

Pearson’s
correlation test

Wilcoxon
rank sum test

Cojump
ratio
and
Mean
PL

Cojump
ratio
and CC

Cojump
ratio
and
Mean
PL

Cojump
ratio
and CC

Cojump
ratio
and
Mean
PL

Cojump
ratio
and CC

Cojump
ratio
and
Mean
PL

Cojump
ratio
and CC

2015 0.6229
(∗∗∗)

0.7731
(∗∗∗)

0
(∗∗∗)

1607 693
(∗∗∗)

0.5567
(∗∗∗)

0.5053
(∗∗∗)

0
(∗∗∗)

336 326
(∗∗∗)

2016 0.3672
(∗∗)

0.8479
(∗∗∗)

0
(∗∗∗)

576 740
(∗∗∗)

0.5781
(∗∗∗)

0.5539
(∗∗∗)

0
(∗∗∗)

290 161
(∗∗∗)

2017 0.3325
(∗∗)

0.8100
(∗∗∗)

0
(∗∗∗)

56 871
(∗∗∗)

0.4234
(∗∗)

0.6025
(∗∗∗)

0
(∗∗∗)

64 367
(∗∗∗)

2018 0.6431
(∗∗∗)

0.7079
(∗∗∗)

0
(∗∗∗)

535 347
(∗∗∗)

0.5055
(∗∗∗)

0.5303
(∗∗∗)

0
(∗∗∗)

138 777
(∗∗∗)

2019 0.6032
(∗∗∗)

0.7476
(∗∗∗)

0
(∗∗∗)

803 536
(∗∗∗)

0.4941
(∗∗∗)

0.5059
(∗∗∗)

0
(∗∗∗)

147 341
(∗∗∗)

Note: the values corresponding to the Pearson’s correlation test are correlation coefficients, and the values corresponding to the

Wilcoxon rank sum test are test statistics. ∗ in parentheses indicate the significance level of the corresponding P-value. ∗, ∗∗, and ∗∗∗

represent statistical significance levels of 5%, 1%, and 0.1%, respectively.

states and calculate the synchronization probability of pairwise state sequences. Then, using the clustering
coefficient series obtained above, we plot the relationship between the clustering coefficient of CRN and the
synchronization probability of states of returns for each year from 2015 to 2019 in figure 10.

From figure 10, it is evident that the fitted curve does not align perfectly with the straight line of slope 1
and intercept 0. However, the deviation is small and it also suggests a strong linear correlation between the
CRN clustering coefficient and the synchronization probability. This indicates that the long memory of
returns has minimal impact on the conclusion of C≈ P(X= Y). This could be attributed to the fact that the
length of the data is just one year, comprising just over two hundred values, where the long memory of
returns is not notably pronounced in such relatively short time series.

5.2. Earth’s ecosystems
In this study, we obtain the China’s ground climate daily data set (V3.0) from the National Tibetan Plateau
Data Center (https://data.tpdc.ac.cn/home). The original data provides daily observations from various
weather stations. We first interpolate the original data into grid data, covering 500× 500 grids over China,
with each grid size of 0.123 1924 (longitude degrees)× 0.099 4549 (latitude degrees). By regionally
averaging, we calculate the daily average precipitation for 34 provinces in China for the period from 2015 to
2019. The length of the sample data of each year is about 365. The unit of precipitation is 0.1 mm, and the
total length of each province’s precipitation sequence is 1826 d.
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Figure 10. The relationship between synchronization probabilities and clustering coefficients of cross-recurrence networks in the
Shenzhen market based on different years’ data.

Figure 11. Relationship between the clustering coefficient of CRNs for paired provincial rainfall data and the probability of
synchronous extreme rainfall events in different years.

For analysis, we consider extreme rainfall events as those exceeding the 95th percentile of daily
precipitation in each year. The occurrence of extreme rainfall in two provinces on the same day is defined as
synchronous rainfall. We calculate the probability of synchronous extreme rainfall events between pairs of
provinces. Then, for each pair of provinces, we construct a CRN based on their respective rainfall sequences,
following similar procedures and parameter choices as described in section 5.1.2. The clustering coefficient
of each recurrence network is calculated.

Figure 11 presents the relationship between the clustering coefficient of the CRNs and the probability of
synchronous extreme rainfall events between pairs of provinces from 2015 to 2019. It tells that this
relationship is positively linear and exhibits a certain level of robustness. The results from the correlation
tests in table 5 also confirm the statistical significance of this linear relationship. Similarly, even though these
two variables show a linear correlation, the results from the rank sum test indicate that they do not come
from the same distribution.

We are also interested in investigating whether the equivalence between C and P(X= Y) approximately
holds in rainfall data samples. Similarly, we partition rainfall sequences into 10 states based on their
respective percentiles and compute the synchronization probability between pairwise rainfall sequences.
Figure 12 depicts the relationship between the clustering coefficient of CRN and the synchronization rate for
each year from 2015 to 2019. It can be seen that the fitted curve of C and P(X= Y) is closely aligned with the
straight line of slope 1 and intercept 0, indicating a more obvious equivalence between C and P(X= Y) in
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Table 5. Results of correlation tests between the precipitation CRNs clustering coefficients and the proportion of synchronized rainfall
events.

Year 2015 2016 2017 2018 2019

Pearson’s correlation test 0.7947
(∗∗∗)

0.8086
(∗∗∗)

0.7780
(∗∗∗)

0.7077
(∗∗∗)

0.7844
(∗∗∗)

Wilcoxon rank sum test 29 425
(∗∗∗)

29 655
(∗∗∗)

27 766
(∗∗∗)

22 185
(∗∗∗)

34 844
(∗∗∗)

Note: the values corresponding to the Pearson’s correlation test are correlation coefficients, and the values corresponding to the

Wilcoxon rank sum test are test statistics. ∗ in parentheses indicate the significance level of the corresponding P-value. ∗, ∗∗, and ∗∗∗

represent statistical significance levels of 5%, 1%, and 0.1%, respectively.

Figure 12. The relationship between synchronization probabilities and clustering coefficients of cross-recurrence networks based
on different years’ rainfall data.

this case. The differences between figures 10 and 12 also indicate that rainfall sequences exhibit stronger
independence compared to return sequences.

5.3. Human interaction behavior system
Ho et al [39] conducted a study to investigate the intercorrelation between gaze and speech during social
interaction games. Specifically, they organized 20 pairs of participants in small groups, where each pair
played two social guessing games, and their eye movements were tracked during the interaction. The length
of each pair of sample sequences is around 100. Through cross-correlation analysis of the gaze and speech
signals between the two participants, they found that speakers often end their turn by directly gazing at the
listener, signaling the listener to respond, resulting in a lagged synchronization of the listener’s speech state
with the speaker’s direct gaze behavior. In other words, during social interaction, the direct gaze state of
participant A exhibits a certain level of synchrony with the speech state of participant B, even though the
latter’s speech state consistently lags behind the former’s gaze state.

We process the data from one of these social games and explore the relationship between the
synchronization rate of one participant’s gaze state with the other participant’s speech state and the
clustering coefficient of the corresponding CRN established from their respective behavioral sequences. In
this experimental data, both the gaze time series and speech time series are binary sequences, where 1
represents the presence of gazing or speaking, and 0 indicates looking away or the end of speech. Treating
both gaze and speech as events, the event synchronization rate between pairs of participants during the
interaction activities shows a positive linear relationship with the clustering coefficient of their respective
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Figure 13. Relationship between the clustering coefficient of the CRNs based on gaze and speech sequences during dyadic
interaction and the state synchronization rate.

Figure 14. The relationship between synchronization probabilities and clustering coefficients of cross-recurrence networks based
on the data of eye-movement experiment.

CRNs, as depicted in figure 13. And the p-value of the corresponding Pearson’s correlation test is 0.03
(<0.05), which indicates that the linear relationship is significant at 5% confidence level.

Similarly, figure 14 illustrates the relationship between the CRN clustering coefficient and the state
synchronization probability between pairs of participants in this scenario. The fitted curve of C and
P(X= Y) shows a slope approaching 1, and while the intercept is not equal to 0, the confidence interval of
the fitted curve still contains the line with a slope of 1 and an intercept of 0. Therefore, this also indicates an
approximate equivalence between C and P(X= Y).

In conclusion, there exists a significant positive linear relationship between the synchronization rate of
events occurring in pairs of objects and the clustering coefficient of the CRNs established based on their
respective time series. This pattern is consistently observed across various complex systems, including but
not limited to financial systems, Earth’s ecological systems, and human interactive behaviors, demonstrating
strong universality. Moreover, data from these three different systems all support the approximate
equivalence between the clustering coefficient of CRN and the unconditional synchronization probability, as
long as the weak independence assumption is satisfied.
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6. Discussion and conclusion

This paper focuses on the similarity patterns or synchronicity of extreme events occurring in pairs of time
series. By leveraging cross-recurrence analysis to capture the complex dynamics of time series and the relative
stability of network topology, we map the two time series into a complex network based on cross-recurrence,
aiming to establish a relationship between the network’s statistical metrics and the probability of
synchronized events occurring in the two time series. Our analysis reveals a positive linear correlation
between the clustering coefficient of the CRN and the event synchronization rate of the two time series. We
conduct simulation experiments by CMLs and observe that the synchronization probability and the
clustering coefficient of CRNs tend to become approximately equivalent. We also conduct empirical analyses
in financial systems, Earth’s ecological systems, and human interactive systems, and find that this pattern is
universally applicable across different complex systems. However, when dealing with limited data, there are
inherent limitations in observing synchronized events between two time series. In contrast, the CRP is
particularly suitable for non-stationary and short time series, with relatively stable statistical features of the
CRN. This context provides a practical scenario for the discovered regularity. For instance, in financial
systems, systemic risk is often represented by index volatility. By identifying stocks that exhibit similar
patterns to the index, i.e. with higher event synchronization rates, we may monitor or even predict systemic
risk using this kind of constituent stock. When only short historical data is available and observing extremes
is rare, it becomes challenging to compute event synchronization rates to identify stocks with high
synchronization with the index. However, due to the positive linear relationship between the clustering
coefficient of the CRN and event synchronicity, we can achieve this goal by constructing CRNs for short time
series.

Similarly, this method can be applied to predict critical events such as extreme rainfall and earthquakes in
specific regions. Therefore, the discovered homomorphic regularity in this study bears significant practical
implications in revealing systemic risk. In the future, we plan to implement and expand the aforementioned
applications based on this regularity.

Data availability statement

The data cannot be made publicly available upon publication because the cost of preparing, depositing and
hosting the data would be prohibitive within the terms of this research project. The data that support the
findings of this study are available upon reasonable request from the authors.
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Appendix

Table A1. List of selected stocks in the Shanghai stock market.

Stock index Name Stock index Name

sh600519 Kweichow Moutai Co Ltd sh600885 Hongfa Technology Co., Ltd
sh601398 Industrial and Commercial Bank of

China Ltd
sh600183 Shengyi Technology Co., Ltd

sh601288 Agricultural Bank of China Co Ltd sh600674 Sichuan Chuantou Energy Co Ltd
sh601857 PetroChina Co Ltd sh600023 Zhejiang Zheneng Electric Power Co., Ltd
sh601988 Bank of China Ltd sh600085 Beijing Tongrentang Co Ltd
sh601318 Ping An Insurance (Group) Company of

China Ltd
sh600298 Angel Yeast Co Ltd

sh603288 Foshan Haitian Flavouring and Food
Company Ltd

sh600038 AVIC Helicopter Co., Ltd

sh600028 China Petroleum & Chemical
Corporation

sh601808 China Oilfield Services Limited

sh600111 China Northern Rare Earth (Group)
High-Tech Co., Ltd

sh600549 Xiamen Tungsten Co Ltd

sh601668 China State Construction Engineering
Co Ltd

sh601607 Shanghai Pharmaceuticals Holding Co.,
Ltd

sh601601 China Pacific Insurance (Group) Co Ltd sh600456 Baoji Titanium Industry Co Ltd
sh601328 Bank of Communications Co LTD sh600688 Sinopec Shanghai Petrochemical Co Ltd
sh600585 Anhui Conch Cement Co Ltd sh600377 Jiangsu Expressway Co Ltd
sh600016 China Minsheng Banking Corp Ltd sh600118 China Spacesat Co Ltd
sh601225 Shaanxi Coal Industry Company Limited sh600642 Shenergy Co Ltd
sh601688 Huatai Securities Co Ltd sh601179 China XD Electric Co Ltd
sh600660 Fuyao Glass Industry Group Co., Ltd sh600316 Jiangxi Hongdu Aviation Industry Co Ltd
sh601006 Daqin Railway Co Ltd sh600027 Huadian Power International

Corporation Ltd
sh600015 Hua Xia Bank Co Ltd sh600348 Shan Xi Hua Yang Group New Energy

Co., Ltd
sh601186 China Railway Construction Co Ltd sh600066 Zhengzhou Yutong Bus Co Ltd
sh600009 Shanghai International Airport Co Ltd sh600004 Guangzhou Baiyun International Airport

Co Ltd
sh601800 China Communications Construction

Company Limited
sh601677 Henan Mingtai AL.Industrial Co Ltd

sh600600 Tsingtao Brewery Co Ltd sh601958 Jinduicheng Molybdenum Co Ltd
sh600132 Chongqing Brewery Co Ltd sh600808 Maanshan Iron and Steel Co Ltd
sh600011 Huaneng Power International Inc sh600535 TASLY PHARMACEUTICAL GROUP

CO., Ltd
sh600563 Xiamen Faratronic Co., Ltd sh601965 China Automotive Engineering Research

Institute Co., Ltd
sh601898 China Coal Energy Co Ltd sh600583 Offshore Oil Engineering Co Ltd
sh601939 China Construction Bank sh601666 Pingdingshan Tianan Coal Mining Co

Ltd

19



New J. Phys. 26 (2024) 013044 S Song and H Li

Table A2. List of selected stocks in the Shenzhen stock market.

Stock index Name Stock index Name

sz000001 Ping An Bank Co., Ltd sz000983 Shanxi Coking Coal Energy Group Co.,
Ltd

sz000027 Shenzhen Energy Group Co., Ltd sz000999 China Resources Sanjiu Medical &
Pharmaceutical Co., Ltd

sz000400 XJ Electric Co., Ltd sz002028 Sieyuan Electric Co., Ltd
sz000402 Financial Street Group Co., Ltd sz002179 AVIC Jonhon Optronic Technology Co.,

Ltd
sz000423 Dong-E-E-Jiao Co., Ltd sz002262 Jiangsu Nhwa Pharmaceutical Co., Ltd
sz000528 Guangxi Liugong Machinery Co., Ltd sz002271 Beijing Oriental Yuhong Waterproof

Technology Co., Ltd
sz000596 Anhui Gujing Distillery Co., Ltd sz002273 Zhejiang Crystal-Optech Co., Ltd
sz000598 Chengdu Xingrong Environment Co.,

Ltd
sz002294 Shenzhen Salubris pharmaceuticals Co.,

Ltd
sz000729 Beijing Yanjing Brewery Co., Ltd sz002304 Jiangsu Yanghe Brewery Joint-Stock Co.,

Ltd
sz000776 GF Securities Co., Ltd sz002311 Guangdong Haid Group Co., Ltd
sz000789 Jiangxi Wannianqing Cement Co., Ltd sz002372 Zhejiang Weixing New Building

Materials Co., Ltd
sz000830 Luxi Chemical Group Co., Ltd sz002419 Rainbow Digital commercial Co., Ltd
sz000848 Cheng De LoLo Co., Ltd sz002424 Guizhou Bailing Group Pharmaceutical

Co., Ltd
sz000869 Yantai Changyu Pioneer Wine Co., Ltd sz002463 Wus Printed Circuit (Kunshan) Co., Ltd
sz000921 Hisense Home Appliances Group Co.,

Ltd
sz002595 Himile Mechanical Science And

Technology (Shandong) Co., Ltd
sz000937 Jizhong Energy Resources Co., Ltd sz002737 Sunflower Pharmaceutical Group Co.,

Ltd
sz000951 Sinotruk Jinan Truck Co., Ltd sz300024 Siasun Robot&Automation Co., Ltd

Figure A1. Relationship between the CRP indicators and the ratio of coexceedances of the constituent stocks in the Shenzhen
stock market in 2015.
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Figure A2. Relationship between the CRN indicators and the ratio of coexceedances of the constituent stocks in the Shenzhen
stock market in 2015.
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