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Abstract The effects of spatial heterogeneity on a
two-dimensional complex Ginzburg–Landau equation
model are studied. In general, the interaction of a pair
of spiral waves with a large degree of heterogeneity
in two different media will cause three different pat-
terns: (a) Multiple spiral waves coexist in different
media; (b) the spiral wave is swept away in onemedium
and remains in another medium; (c) all of the spiral
waves are suppressed by travelling waves having dif-
ferent frequencies. These travelling waves are gener-
ated from interface reported before. It is found that the
interface is a wave source that can generate travelling
waves with different frequencies in two submedia to
compete with the original spiral waves in two different
media. The competition results depend on the frequen-
cies of the original spiral wave and the two travelling
waves. Furthermore, local periodic pacing can replace
the effect of the interface and reproduce the correspond-
ing results, which gives additional evidence that the
interface works as a wave source. The results give new
ideas in pattern control such that we can suppress and
annihilate spiral waves by generating a large degree of
heterogeneity using selected parameters.
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1 Introduction

Spiral waves have been widely observed in natural sys-
tems, including biological systems, physical systems,
and chemical reactions. Examples include cardiacmus-
cle tissue [1–3], aggregating slime mold [4], oxidation
of CO on platinum [5], and the Belousov–Zhabotinsky
(BZ) reaction [6]. Because of its close relevance to
cardiac arrhythmias, especially ventricular fibrillation
(VF), which can cause sudden cardiac death in only
1 min, spiral waves are currently attracting much atten-
tion.An increasing number of experiments indicate that
VF is inducedby the transitions of cardiac electric prop-
agatingwaves from spiral waves to turbulent waves [7].
Therefore, it has great significance to develop effective
methods to control and annihilate spiral waves. There
are various control approaches, including external sig-
nals [8–15], feedback control methods [16], param-
eter modifications [17], and heterogeneous patching
method [18–20]. In this paper, we consider the effect
of heterogeneity on spiral wave control.

The rules of spiral wave competition have been
investigated and classified. In a homogeneous oscil-
latory medium, among outwardly propagating spirals
(OPSs), higher frequencies dominate; among inwardly
propagating spirals (IPSs), lower frequencies domi-
nate; between OPSs and IPSs, OPSs dominates [18,
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19,21,22]. However, the real systems are often spa-
tially heterogeneous, so it is more complicated. Many
studies of spiral waves in excitable and oscillatory
systems have focused on the effect of heterogeneity,
which have been extensively theoretically [18,23,24]
and experimentally examined. For the competition of
OPSs or IPSs, a weak heterogeneity causes the col-
lision and annihilation of spiral waves with different
frequencies [25,26]. The weak inhomogeneity causes
certain spiral waves that are favorably located in the
inhomogeneousmedium towiden their domains,which
crowd out and sweep away less favorably located spi-
ral waves [21]. When the degree of heterogeneity is
beyond the critical threshold, two IPSs coexist insu-
lated by regions of highly disordered wave breakup
in the midline region protected the core of the spi-
ral wave from being unwound and swept away [18];
two OPSs definitely coexist because the induced wave
front with the larger frequency cannot expand in the
new territory [26]. For the competition of OPSs with
IPSs, interface-selected waves (ISWs) were found in
bidomain systems when the control parameters are on
a well-defined parameter surface [19]. The aforemen-
tioned results were verified by researchers in the simu-
lations or real experiments. However, when the degree
of heterogeneity is sufficiently strong, multiple spiral
waves do not always coexist, and we find other new
patterns. In this article, we investigate the interaction
of spiral waves with a large degree of heterogeneity;
we find that not only two OPSs or two IPSs can coex-
ist, but also that OPS can coexist with IPS and find a
new different coexist mechanism. This mechanism can
also illustrate the other new patterns. With this type
of heterogeneity, the interface acts similar to a wall
that block two media. It enables two types of waves
with different frequencies in two media to coexist. We
find that travelling waves generate from the interface,
and they have different frequencies in these two sub-
media. Newly generated travelling waves have com-
petitions for space with original spiral waves. Com-
petitions between these waves are complex and some
waves survive. If all spiral waves win in two media,
multiple spiral waves coexist. However, when the gen-
erated travelling waves dominate, other patterns will
appear, and the number of spiral waves will decrease.
Our research investigates the type of heterogeneity that
can reduce or eliminate spiral waves.

In this paper, with the aforementioned motivations,
the interactions between stable spiral waves in a two-

dimensional heterogeneous oscillatory medium are
investigated in detail. Using the two-dimensional com-
plex Ginzburg–Landau equation (CGLE), the forma-
tion mechanisms of the travelling waves that originate
from the competition among spiral waves in different
media are explored. In the next section, we recall the
two-dimensional CGLE model. In Sect. 3, we present
the numerical simulations and analysis for the compe-
tition of spiral waves in heterogeneous media. We find
that a local periodic pacing can replace the effect of
the interface and reproduce all corresponding results,
which demonstrates that the interface is a wave source.
Conclusions and discussions are provided in Sect. 4.

2 Model

A two-dimensional complex Ginzburg–Landau
equation (CGLE) is investigated. It describes extended
systems near a Hopf bifurcation and where the homo-
geneous state is oscillatory. The CGLE system is as
follows:

∂W

∂t
= W − (1 + iα)|W |2W + (1 + iβ)∇2W (1)

where W (x, y, t) is a complex variable that describes
the amplitude of the patternmodulations at spatial loca-
tion (x, y) and time t ; α and β are the nonlinear fre-
quency shift and diffusion coefficient, respectively. ∇2

is the two-dimensional Laplacian operator. To study
the interaction of two spiral waves in different media,
a simple model is constructed with two halves of the
medium having different α or β.

(α, β) =
{

(αL , βL ), x ∈ [1, 200], y ∈ [1, 200],
(αR, βR), x ∈ [201, 400], y ∈ [1, 200].

(2)

In the simulations, the CGLE system is integrated by
an explicit Euler method with time step �t = 0.01,
and the standard five-point approximation is selected
to discretize the Laplace operator with the space step
�x = �y = 0.5. Each half of the medium is a 200 ×
200 grid with no-flux boundary conditions. The spiral
waves in each homogeneous medium are generated by
the cross-field initial condition in all simulations unless
otherwise specified.

Because the results of the interaction of two spiral
waves crucially depend on the frequency of the spiral
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(a)

(b) (c)

Fig. 1 (Color online) a The frequency (ω) of a single spiral wave in parameter space (α, β) of the CGLE system. b The frequency of
a single spiral wave with β = 1. c The frequency of a single spiral wave with α = 1

waves, we have numerically obtained the correspond-
ing frequency on the parameter space. Figure 1a shows
the frequency of a single spiral wave in the CGLE sys-
tem. Figure 1b shows the frequency of a single spiral
wave with β = 1. Figure 1c shows the frequency of a
single spiral wave with α = 1.

3 Numerical results and analysis

3.1 Competition of spiral waves

The competition of spiral waves in heterogeneous
CGLE systems is studied. For simplicity, we first gen-
erate two stable spirals and subsequently investigate

the interaction between two spiral waves in the left and
right halves of the medium. All results are stable pat-
terns after sufficient steps of simulation. There are three
different patterns after the interaction: coexistence of
multiple spiral waves with different parameters, one
remaining spiral wave and no remaining spiral wave
[see supplementary]. All results are illustrated in detail
in the following sections.

3.1.1 Coexistence of multiple spiral waves with
different parameters

Figure 2 shows the results of two remaining spiral
waves, where the red arrows indicate the propaga-
tion direction of the waves. Figure 2a–c shows the
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Fig. 2 (Color online) Spiral
waves competition patterns
of W (x, y)’s real part, of a
heterogeneous 2D CGLE
system with coexistence of
multiple spiral waves after
the competition. The red
arrows indicate the
propagation direction of the
waves, the blue dots show
the numerical results of
frequency distributions at
y = 100, x ∈ [1, 400]. All
the corresponding
frequencies of the steady
states are labeled in the
figures. Each half of the
medium is a 200 × 200 grid
with no-flux boundary
conditions. Numerical
simulations are made with
the space step
�x = �y = 0.5, time step
�t = 0.01. The spiral
waves in each homogeneous
medium are generated by
the cross-field initial
condition and the above
time and space steps, and
initial condition are used in
all simulations unless
otherwise specified. a
αL = 0.2, βL = 1.2,
αR = −0.7, βR = −2.2. b
αL = 0.2, βL = 1.2,
αR = −0.6, βR = 0.6. c
αL = 0.5, βL = −0.8,
αR = −0.6, βR = 0.6.
a1–c1 and a3–c3 are the
steady states and steady
frequencies before the
competition of spiral waves.
a2–c2 and a4–c4 are the
steady states and steady
frequencies after the
competition of spiral waves.
After the competition, there
have multiple spiral waves
coexist, the difference in the
frequency of the spiral
waves in the two media also
indicates that multiple spiral
waves can coexist

(a1)

(a3) (a4)

(a2)

(b1)

(b3) (b4)

(b2)

(c1)

(c3) (c4)

(c2)
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Fig. 3 (Color online) One
spiral wave remnant. a
αL = 0.2, βL = 1.2,
αR = 0.7, βR = 2.2. b
αL = 0.2, βL = 1.2,
αR = 1.0, βR = −0.1. c
αL = 0.2, βL = 1.2,
αR = −0.9, βR = −0.1. d
αL = −0.6, βL = 0.6,
αR = −0.9, βR = −0.1.
a1–d1 and a3–d3 are the
steady states and steady
frequencies before the
competition of spiral waves.
a2–d2 and a4–d4 are the
steady states and steady
frequencies after the
competition of spiral waves.
After the competition, the
spiral wave in one domain is
driven away by the
generated travelling waves,
the difference in the
frequency of the spiral
wave, and the travelling
waves indicates they can
coexist

(a1) (a2)

(a3) (a4)

(b1) (b2)

(b3) (b4)

(c1) (c2)

(c3) (c4)

(d1) (d2)

(d3) (d4)
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Fig. 4 (Color online) No
spiral wave remnant. a
αL = 0.2, βL = 1.2,
αR = 1.0, βR = 0.1. b
αL = −0.9, βL = −0.1,
αR = 1.0, βR = 0.1. a1–b1
and a3–b3 are the steady
states and steady
frequencies before the
competition of spiral waves.
a2–b2 and a4–b4 are the
steady states and steady
frequencies after the
competition of spiral waves.
After the competition, the
spiral waves in the two
domains all become
travelling waves, the
difference in the frequency
of the travelling waves
indicates the generated
travellings can coexist

(a1) (a2)

(a3) (a4)

(b1) (b2)

(b3) (b4)

cases of competition with two OPSs, one OPS and
one IPS, and two IPSs, respectively. The correspond-
ing parameters are provided in the figure caption. Fig-
ure 2a1–c1 shows the steady states before the com-
petition. Figure 2a2–c2 shows the steady states after
the competition. Figure 2a3, a4 (Fig. 2b3, b4, c3, c4)
shows the numerical results of frequency distributions
at y = 100, x ∈ [1, 400]. All corresponding frequen-
cies of the steady states are labeled in the figures. We
observe that after the interaction, these spiral waves
in two domains coexist, and the frequencies remain
unchanged. These results are consistent with previ-
ous results that when the heterogeneity becomes suffi-
ciently large, multiple spiral waves can coexist [18].

3.1.2 One spiral wave remnant

Figure 3 shows the results that only one spiral wave
remains after the competition. The other spiral wave
was swept out of the boundary by the travelling waves.
In Fig. 3a, there are two OPSs; after the interaction,
the left OPS was suppressed by the travelling waves,
and the rightOPS remains. Clearly, the travellingwaves
have a larger frequency than the original spiral wave. In
Fig. 3b, c, there are oneOPS in the left medium and one
IPS in the right medium. The left OPS becomes travel-
ling waves in Fig. 3b2, and the right IPS becomes trav-
elling waves in Fig. 3c2. In Fig. 3d, there are two IPSs;
after the interaction, the right spiral wave becomes
small-frequency travelling waves. It is interesting to
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compare these frequencies before and after the com-
petition. We find that when the travelling waves sup-
press the OPS, the frequency will increase. When the
travelling waves suppress the IPS, the frequency will
decrease. The frequency of the remnant spiral wave
remains unchanged.

3.1.3 No spiral wave remnant

Figure 4 shows the results that there is no spiral wave
after the competition. In Fig. 4a, there is one OPS and
one IPS. After the competition, both domains become
travelling waves. The frequency of the left domain
increases, and the frequency of the right domain
decreases. There are two IPSs in Fig. 4b. After the
interaction, the frequencies decrease in both domains.
For the two OPSs, we have attempted many cases but
unfortunately have not found an instance where both
OPSs become higher-frequency travelling waves after
the competition.

3.2 Generated travelling waves and their effects on
the original spiral waves

According to the above results, when the hetero-
geneity between the left and right media is sufficiently
strong, the interface becomes a wave source and gener-
ates travelling waves. The travelling waves have differ-
ent frequencies in the two different media, which is not
similar to the interface-selected waves with same fre-
quency in submedium at all. In everymedium, the orig-
inal spiral waves compete with the generated travelling
waves obeying the competition laws in homogeneous
medium. When the original spiral wave is an OPS,
the high-frequency wave suppresses the low-frequency
wave. When the original spiral wave is an IPS, the low-
frequency wave suppresses the high-frequency wave.
Thus, the generated travelling waves have crucial roles
in the competition of two spiral waves.

The above facts can be well explained by the fre-
quency competition of the generated travelling waves

from the interface with the corresponding stable spi-
ral waves in the same medium. Previous studies have
claimed that the interface is a wave source generat-
ing travelling waves with the same frequency in the
submedium in some conditions [19,27]. To further jus-
tify these conclusions, we alter the media by gradually
changing the parameter setting. The following simula-
tion results can provide us more evidence about these
conclusions.

We fixed αL = 0.2 and βL = 1.2 (point A in
Fig. 5a) in the left medium, set αR = 1.0 (l1) and
αR = −0.9 (l2) and altered βR ∈ [−0.5, 0.5] in the
right medium. Figure 5b, c shows the frequencies after
the interaction between A and l1 (l2). The black-dashed
curves represent the frequencies of the original spi-
ral waves before the competition (ωL , ωR), and the
black dotted lines represent the frequencies of the gen-
erated travelling waves after the competition (ω′

L , ω
′
R).

To obtain the frequencies of the generated travelling
waves, we first set the travelling waves in the left and
right media and subsequently let the twomedia interact
with each other. The frequencies are measured at the
left (x = 50, y = 100) and right (x = 350, y = 100)
sides of the medium after the system reaches the steady
state. Because the left medium remains unchanged, the
frequency of the original spiral wave (ωL ) is always
constant. Meanwhile, when βR is changed,ωR ,ω′

L and
ω′
R are altered. Thus, with different parameters, there

are different patterns after the competition. The points
linked by the blue lines (AB, AD) and green line (AC)
represent the corresponding results in Figs. 3b, c and
4a. The points linked by the red line (AE) represents the
competition between A and E. There are one OPS in
the left medium and one IPS in the right medium. In the
left medium,ωL is larger thanω′

L ; in the right medium,
ωR is smaller than ω′

R . According to our conclusions,
two spiral waves should coexist. Figure 6 depicts the
steady states and steady frequencies before and after the
competition. It shows that the prediction result actually
occurs in the simulation.

Now, we attempt to show that the interface can act as
a wave source. In other words, a local periodic pacing
as the wave source can generate the above travelling
waves in two media. For the system:

⎧⎨
⎩

∂W
∂t = W − (1 + iαL)|W |2W + (1 + iβL)∇2W, x ∈ [1, 200], y ∈ [1, 200],
W = I, x = 201, y ∈ [1, 200],
∂W
∂t = W − (1 + iαR)|W |2W + (1 + iβR)∇2W, x ∈ [202, 400], y ∈ [1, 200].

(3)
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(a)

(b) (c)

Fig. 5 (Color online) a Parameter space (α, β) of the CGLE.
A: α = 0.2, β = 1.2, B: α = 1.0, β = − 0.1, C: α = 1.0,
β = 0.1, D: α = − 0.9, β = − 0.1, E: α = − 0.9, β = 0.4. The
points linked by red lines represent coexistence of multiple spiral
waves with different parameters (see Fig. 2), the points linked
by blue lines represent one spiral wave remnant (see Fig. 3), and
the points linked by green lines represent no spiral wave remnant
(see Fig. 4). b Frequency competition between the original spiral
waves and the generated travelling waves in each half medium.
The frequencies are measured at the left (x = 50, y = 100)

and right (x = 350, y = 100) sides of the medium after the
system reaches the steady state. Left medium: A, right medium:
αR = 1.0, βR = β (l1). The black-dashed curves represent the
frequencies of the original spiral waves before the competition
(ωL , ωR), and the black dotted lines represent the frequencies
of the generated travelling waves after the competition (ω′

L , ω
′
R)

with a initial condition that generate travellingwaves. cThe same
as (b) with left medium: A, right medium: αR = − 0.9, βR = β

(l2)

It supports a travelling wave solution

W =
√
1 − k2ei(−ωt+kr), (4a)

ω = α + (β − α)k2. (4b)

where I is the local periodic pacing; k is the wavenum-
ber; and r = √

x2 + y2. In a singlemedium,when there

is no local periodic pacing, ω is the natural frequency
ω0 (ω0 = α for CGLE). When we let the local periodic
pacing I be a wave source in the x = 201 stripe at
the interface of the two different media, the travelling
waves will be induced in the left and right media by the
pacing. With the pacing, we know that the frequencies
of the generated travelling waves in two coupled media
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Fig. 6 (Color online) The
spiral waves’ competition
between A and E. a1 and a3
are the steady states and
steady frequencies before
the competition. a2 and a4
are the steady states and
steady frequencies after the
competition

(a3) (a4)

(a2)(a1)

(a1)

(a3) (a4)

(a2) (b1) (b2)

(b3) (b4)

(d2)(d1)(c2)(c1)

(c3) (c4) (d3) (d4)

Fig. 7 (Color online) Compare the influence of the interface and
the periodic pacing.Wegave an initial condition that can generate
travellingwaves in twodifferentmedia and then let themcompete
with each other. a1–d1 and a3–d3 are the steady states and steady
frequencies after the competition of the initial travelling waves
with the generated travelling waves. We applied a local periodic
pacing I as the wave source to the x = 201 stripe at the interface
of the two different media. a2–d2 and a4–d4 are the steady states
and steady frequencies after the competition of the initial travel-
ling waves with the travelling waves that induced by the pacing.

a αL = 0.2, βL = 1.2, αR = 1.0, βR = −0.1, ω′
L = 0.587,

ω′
R = 0.887; b αL = 0.2, βL = 1.2, αR = 1.0, βR = 0.1,

ω′
L = 0.235, ω′

R = 0.878; c αL = 0.2, βL = 1.2, αR = −0.9,
βR = −0.1,ω′

L = 0.206,ω′
R = −0.794; d αL = 0.2, βL = 1.2,

αR = −0.9, βR = 0.4, ω′
L = 0.200, ω′

R = −0.671. The fre-
quency distributions and wave numbers after the competition
have the same characteristics as the frequency distributions and
wave numbers after the pacing as a wave source added at the
interface
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are ω′
L and ω′

R . If we insert Eqs. (4b) into (4a) with-
out the coupling terms, every grid in the left and right
media is a rotator:

WL =
√
1 − ω′

L − αL

βL − αL
ei(−ω′

L t), (5a)

WR =
√
1 − ω′

R − αR

βR − αR
ei(−ω′

Rt). (5b)

Thus, it is reasonable to let the local periodic pacing be
I = WL + WR and reproduce similar travelling waves
in two media.

Figure 7a1–d1 shows the steady states after the inter-
action of travelling waves in two different media. Fig-
ure 7a2–d2 shows the steady states with the local peri-
odic pacing at the x = 201 stripe. Figure 7a3–d3,
a4–d4 shows the corresponding steady frequencies. In
Fig. 7b–d, with the local periodic pacing I = WL+WR

as the wave source, we can generate the travelling
waves with identical wavenumbers and frequencies in
each medium as shown in two coupled media. How-
ever, this type of pacing cannot obtain a similar result
in Fig. 7a. In Fig. 7a, ω′

L = 0.587, where the system
is completely driven by the pacing [see supplemen-
tary]. Thus, the system is sensitive to the pacing, and
I = WL + WR does not work for this case. We find
that the pacing I = 0.55ei(−ω′

L t) works well for the
two regions including the gradual change in frequen-
cies. These numerical results demonstrate that with a
large degree of heterogeneity in two different media,
the interface can act as a wave source.

4 Conclusion

Spiral wave competition has become an interesting
question in recent years. In this study, we have inves-
tigated the competition of spiral waves in two differ-
ent media with a large degree of heterogeneity using a
model of a two-dimensional CGLE system.

We have found a new phenomenon which was not
reported in literature before as per author’s knowledge.
In summary, there are three results for different parame-
ters in this system: coexistence ofmultiple spiral waves
with different parameters, one remaining spiral wave
and no remaining spiral waves. We have also found
that travelling waves can generate from the interface
and propagate to two submedia when the degree of het-

erogeneity of bothmedia is beyond their critical thresh-
olds [18]. The interface acts similar to awall that blocks
two media and becomes a wave source. Then, the com-
petition of spiral waves in these media becomes the
competition of the generated travelling waves from the
interface with the original spiral wave in each homoge-
neous medium. The competition results depend on the
frequencies of the original spiral waves, and the gener-
ated travelling waves from the interface may have dif-
ferent frequencies in two media. The interface as the
wave source plays a crucial role in the spiral wave com-
petition. Detailed research on the interface as a wave
source can deepen our understanding. Thus, we have
proven that the interface is a wave source by adding a
local periodic pacing at the interface, and an appropri-
ate local periodic pacing can generate identical results.

The aforementioned features suggest that we can
eliminate spiral waves by generating a large degree of
heterogeneity using selected parameters. Although the
above studies address the competition of spiralwaves in
heterogeneous CGLE systems, the conclusions are also
applicable to more complex heterogeneous oscillatory
media such as BZ-AOT systems. The proposed method
may have potential applications in actual experiments.
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