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Reconstructing complex networks from measurable data is a fundamental problem for understanding
and controlling collective dynamics of complex networked systems. However, a significant challenge arises
when we attempt to decode structural information hidden in limited amounts of data accompanied by noise
and in the presence of inaccessible nodes. Here, we develop a general framework for robust reconstruction
of complex networks from sparse and noisy data. Specifically, we decompose the task of reconstructing the
whole network into recovering local structures centered at each node. Thus, the natural sparsity of complex
networks ensures a conversion from the local structure reconstruction into a sparse signal reconstruction
problem that can be addressed by using the lasso, a convex optimization method. We apply our method to
evolutionary games, transportation, and communication processes taking place in a variety of model and
real complex networks, finding that universal high reconstruction accuracy can be achieved from sparse
data in spite of noise in time series and missing data of partial nodes. Our approach opens new routes to the
network reconstruction problem and has potential applications in a wide range of fields.
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Complex networked systems are common in many fields
[1–3]. The need to ascertain collective dynamics of such
systems to control them is shared among different scientific
communities [4–6]. Much evidence has demonstrated that
interaction patterns among dynamical elements captured by
a complex network play deterministic roles in collective
dynamics [7]. It is thus imperative to study a complex
networked system as a whole rather than study each
component separately to offer a comprehensive under-
standing of the whole system [8]. However, we are often
incapable of directly accessing network structures; instead,
only limited observable data are available [9], raising the
need for network reconstruction approaches to uncovering
network structures from data. Network reconstruction, the
inverse problem, is challenging because structural infor-
mation is hidden in measurable data in an unknown manner
and the solution space of all possible structural configu-
rations is of extremely high dimension. So far a number of
approaches have been proposed to address the inverse
problem [4,5,9–17]. However, accurate and robust
reconstruction of large complex networks is still a chal-
lenging problem, especially given limited measurements
disturbed by noise and unexpected factors.
In this Letter, we develop a general framework to

reconcile the contradiction between the robustness of
reconstructing complex networks and limits on our ability
to access sufficient amounts of data required by conven-
tional approaches. The key lies in converting the network
reconstruction problem into a sparse signal reconstruction
problem that can be addressed by exploiting the lasso, a
convex optimization algorithm [18,19]. In particular, recon-
structing the whole network structure can be achieved by
inferring local connections of each node individually via

our framework. The natural sparsity of complex networks
suggests that on average the number of real connections of
a node is much less than the number of all possible
connections, i.e., the size of a network. Thus, to identify
direct neighbors of a node from the pool of all nodes in a
network is analogous to the problem of sparse signal
reconstruction. By using the lasso that incorporates both
an error control term and an L1 norm, the neighbors of each
node can be reliably identified from a small amount of data
that can be much less than the size of a network. The L1

norm, according to the compressed sensing theory [20],
ensures the sparse data requirement while, simultaneously,
the error control term ensures the robustness of
reconstruction against noise and missing nodes. The whole
network can then be assembled by simply matching
neighboring sets of all nodes. We will validate our
reconstruction framework by considering three represen-
tative dynamics, including the ultimatum game [21], trans-
portation [22], and communications [23], taking place in
both homogeneous and heterogeneous networks. Our
approach opens new routes towards understanding and
controlling complex networked systems and has implica-
tions for many social, technical, and biological networks.
We articulate our reconstruction framework by taking the

ultimatum game (UG) as a representative example. We then
apply the framework to the transportation of electrical
current and communications via sending data packets.
In the evolutionary UG on networks, each node is

occupied by a player. In each round, player i plays the
UG twice with each of his or her neighbors, both as a
proposer and a responder with strategy (pi, qi), where pi
denotes the amount offered to the other player if i proposes
and qi denotes the minimum acceptance level if i
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responds [24,25]. The profit of player i obtained in the
game with player j is calculated as follows:

Uij ¼

8
>>><

>>>:

pj þ 1 − pi pi ≥ qj and pj ≥ qi
1 − pi pi ≥ qj and pj < qi
pj pi < qj and pj ≥ qi
0 pi < qj and pj < qi

; ð1Þ

where pi; pj ∈ ½0; 1�. The payoff gi of i at a round is the
sum of all profits from playing the UG with i’s neighbors,
i.e., gi ¼

P
j∈Γi

Uij, where Γi denotes the set of i’s
neighbors. In each round, all participants play the UG
with their direct neighbors simultaneously and gain pay-
offs. Players update their strategies (p; q) in each round by
learning from one of their neighbors with the highest
payoffs. To be concrete, player i selects the neighbor with
the maximum payoff gmaxðtÞ and takes over the neighbor’s
strategy with probability Wði ← maxÞ ¼ gmaxðtÞ=½giðtÞ þP

j∈Γi
gjðtÞ� [26]. To better mimic real situations, random

mutation rates are included in each round: all players adjust
their (p; q) according to (piðtþ1Þ;qiðtþ1Þ)¼ (piðtÞþ
δ;qiðtÞþδ), where δ ∈ ½−ε; ε� is a small random number
[27]. Without loss of generality, we set ε ¼ 0.05 and
p; q ∈ ½0; 1�. During the evolution of the UG, we assume
that only the time series of (piðtÞ; qiðtÞ) and giðtÞ
(i ¼ 1;…; N) are measurable.
The network reconstruction can be initiated from the

relationship between strategies (piðtÞ; qiðtÞ) and payoffs
giðtÞ. Note that giðtÞ ¼

P
N
j¼1;j≠i aijUij, where aij ¼ 1 if

player i and j are connected and aij ¼ 0 otherwise.
Moreover, Uij is exclusively determined by the strategies
of i and j. These imply that hidden interactions between i
and its neighbors can be extracted from the relationship
between strategies and payoffs, enabling the inference of
i’s links based solely on the strategies and payoffs.
Necessary information for recovering i’s links can be
acquired with respect to different time t. Specifically, for
M accessible time instances t1;…; tM, we convert the
reconstruction problem into the matrix form Yi ¼ Φi ×Xi:

2
6664

yiðt1Þ
yiðt2Þ
..
.

yiðtMÞ

3
7775 ¼

2
6664

ϕi1ðt1Þ ϕi2ðt1Þ … ϕiNðt1Þ
ϕi1ðt2Þ ϕi2ðt2Þ … ϕiNðt2Þ

..

. ..
. ..

. ..
.

ϕi1ðtMÞ ϕi2ðtMÞ … ϕiNðtMÞ

3
7775

2
6664

xi1
xi2
..
.

xiN

3
7775;

ð2Þ

where Yi ∈ RM×1 is the payoff vector of i with yiðtμÞ ¼
giðtμÞ ðμ ¼ 1;…;MÞ,Xi ∈ RN×1 is the neighboring vector
of i with xij ¼ aij ðj ¼ 1;…; NÞ, and Φi ∈ RM×N is the
virtual-payoff matrix of i with ϕijðtμÞ ¼ UijðtμÞ.
Because UijðtÞ is determined by (piðtÞ; qiðtÞ) and

(pjðtÞ; qjðtÞ) according to Eq. (1), Yi and Φi can be
collected or calculated directly from the time series of

strategies and payoffs. Our goal is to reconstruct Xi from
Yi and Φi. Note that the number of nonzero elements inXi,
i.e., the number of the neighbors of i, is usually much less
than the length N of Xi. This indicates that Xi is sparse,
which is ensured by the natural sparsity of complex
networks. An intuitive illustration of the reconstruction
method is shown in Fig. 1. Thus, the problem of identifying
the neighborhood of i is transformed into that of sparse
signal reconstruction, which can be addressed by using
the lasso.
The lasso is a convex optimization method for solving

min
Xi

�
1

2M
∥Yi − ΦiXi∥22 þ λ∥Xi∥1

�
; ð3Þ

where λ is a non-negative regularization parameter [18,19].
The sparsity of the solution is ensured by ∥Xi∥1 in the lasso
according to the compressed sensing theory [20].
Meanwhile, the least square term ∥Yi − ΦiXi∥22 makes
the solution more robust against noise in time series
and missing data of partial nodes than would the L1-
norm-based optimization method.
The neighborhood of i is given by the reconstructed

vector Xi, in which all nonzero elements correspond to
direct neighbors of i. In a similar fashion, we construct the
reconstruction equations of all nodes, yielding the neigh-
boring sets of all nodes. The whole network can then be
assembled by simply matching the neighborhoods of
nodes. Because of the sparsity ofXi, it can be reconstructed
by using the lasso from a small amount of data that are
much less than the length of Xi, i.e., network size N.
Although we infer the local structure of each node
separately by constructing its own reconstruction equation,

FIG. 1 (color online). Illustration of reconstructing the local
structure of a node. For the red node with three neighbors, No. 2,
No. 4, and No. 9 in blue, we can establish vector Y and matrix Φ
in the reconstruction form Y ¼ ΦX from data, where vector X
captures the neighbors of the red node. If the reconstruction is
accurate, elements in the second, fourth, and ninth rows of X
corresponding to nodes No. 2, No. 4, and No. 9 will be nonzero
values (black color), while the other elements are zero (white
color). The length ofX is N, which is in general much larger than
the average degree of a node, say, three neighbors, ensuring the
sparsity ofX. In a similar fashion, the local structure of each node
can be recovered from relatively small amounts of data compared
to the network size by using the lasso. Note that only one set of
data is used to reconstruct local structures of different nodes,
which ensures the sparse data requirement.
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we only use one set of data sampling in time series. This
enables a sparse data requirement for recovering the whole
network.
We consider current transportation in a network con-

sisting of resistors [22]. The resistance of a resistor between
node i and j is denoted by rij. If i and j are not directly
connected by a resistor, rij ¼ ∞. For arbitrary node i,
according to Kirchhoff’s law, we have

XN

j¼1

aij
rij

ðVi − VjÞ ¼ Ii; ð4Þ

where Vi and Vj are the voltage at i and j and Ii is the total
electrical current at i. To better mimic real power networks,
alternating current is considered. Specifically, at node i,
Vi ¼ V̄ sin½ðωþ ΔωiÞt�, where the constant V̄ is the
voltage peak, ω is the frequency, and Δωi is the perturba-
tion. Without loss of generality, we set V̄ ¼ 1, ω ¼ 103,
and the random number Δωi ∈ ½0; 20�. Given voltages at
nodes and resistances of links, currents at nodes can be
calculated according to Kirchhoff’s laws at different time
constants. We assume that only voltages and electrical
currents at nodes are measurable and our purpose is to
reconstruct the resistor network. In an analogy with the UG
on networks, based on Eq. (4), we can establish the
reconstruction equation Yi ¼ Φi ×Xi with respect to time
constants t1;…; tM, where yiðtμÞ ¼ IiðtμÞ, xij ¼ 1=rij, and
ϕijðtμÞ ¼ ViðtμÞ − VjðtμÞ with μ ¼ 1;…;M and
j ¼ 1;…; N. Here, if i and j are connected by a resistor,
xij ¼ 1=rij is nonzero; otherwise, xij ¼ 0. Thus, the
neighboring vector Xi is sparse and can be reconstructed
by using the lasso from a small amount of data.
Analogously, the whole network can be recovered by
separately reconstructing the neighboring vectors of
all nodes.
We propose a simple network model to capture com-

munications in populations via phones, Emails, etc. At each
time, individual i may contact one of his or her neighbors j
according to probability wij by sending data packets. If i
and j are not connected, wij ¼ 0. In a period, the total
incoming flux fi of i can be described as

fi ¼
XN

j¼1

wji
~fj; ð5Þ

where ~fj is the total outgoing flux from j to its neighbors in
the period and

P
N
i¼1 wji ¼ 1. Equation (5) is valid because

of the flux conservation in the network. In the real situation,
~fj usually fluctuates with time, providing an independent
relationship between incoming and outgoing fluxes for
constructing the reconstruction equation Yi ¼ Φi ×Xi.
Here, yiðtμÞ ¼ fiðtμÞ is the total incoming flux of i at
time period tμ, ϕijðtμÞ ¼ ~fjðtμÞ is the total outgoing flux of
j at time period tμ, and xij ¼ wji captures connections

between i and its neighbors. Given the total incoming and
outgoing fluxes of nodes that can be measured without the
need of any network information and communication
content, we can as well use the lasso to reconstruct the
neighboring set of node i and those of the other nodes, such
that full reconstruction of the whole network is achieved
from sparse data.
We simulate the UG, electrical currents, and communi-

cations on both homogeneous and heterogeneous networks,
including random [28], small-world [29], and scale-free
[30] networks. For the three types of dynamical processes,
we record strategies and payoffs of players, voltages and
currents, and incoming and outgoing fluxes at nodes at
different times, to apply our reconstruction method with
respect to different amounts of data (Data≡M=N, where
M is the number of accessible time instances in the time
series). Figure 2 shows the results of the UG on small-
world networks. For very small amounts of data, e.g.,
Data ¼ 0.1, links are difficult to identify because of the
mixture of reconstructed elements in X, whereas for
Data ¼ 0.4, there is a vast and clear gap between actual
links and null connections, ensuring perfect reconstruction
[Fig. 2(a)]. Even with strong measurement noise, e.g.,

(a) (b)

(c) (d)

FIG. 2 (color online). Reconstructed values of elements in
vector X for the UG on Watts-Strogatz (WS) small-world
networks [29] for different data amounts (a) without measure-
ment noise and (b) with Gaussian noise [N ð0; 0.32Þ]. (c) TPR
versus FPR and (d) precision versus recall for different data
amounts for the UG on WS small-world networks without noise.
In (c) and (d), the dashed lines represent the results of completely
random guesses. The network size N is 100, and the average
degree hki ¼ 6. Rewiring probability of small-world networks is
0.3. There are no externally inaccessible nodes. The parameter λ
is set to be 10−3. We have tested a wide range of values of λ,
finding that optimal reconstruction performance can be achieved
in the range ½10−4; 10−2� and the reconstruction performance in
the range is insensitive to λ. Thus, we set λ ¼ 10−3 for all
reconstructions.
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N ð0; 0.32Þ, by increasing Data, full reconstruction can be
still accomplished [Fig. 2(b)]. We use two standard indices,
true positive rate (TPR) versus false positive rate (FPR),
and precision versus recall to measure quantitatively
reconstruction performance [15] (see Ref. [31] for more
details). We see that for Data ¼ 0.4, both the area under the
receiver operating characteristic curve (AUROC) in TPR
versus FPR [Fig. 2(c)] and the area under the precision-
recall curve (AUPR) in precision versus recall [Fig. 2(d)]
equal 1, indicating that links and null connections can be
completely distinguished from each other with a certain
threshold. Because high reconstruction accuracy can
always be achieved, we explore the minimum data for
ensuring 0.95 AUROC and AUPR simultaneously for
different types of dynamics and networks. As displayed
in Table I, with little measurement noise and a small
fraction of inaccessible nodes, only a small amount of data
is required, especially for large networks, e.g., N ¼ 1000.
In the presence of strong noise and a large fraction of
missing nodes, high accuracy can be still achieved from a
relatively larger amount of data. We have also tested our
method on several empirical networks (Table II), finding
that only sparse data are required for full reconstruction as
well. These results demonstrate that our general approach
offers robust reconstruction of complex networks from
sparse data.
In conclusion, we develop a general framework to

reconstruct complex networks with great robustness from
sparse data that in general can be much less than network
sizes. The key to our method lies in decomposing the task
of reconstructing the whole network into inferring local
connections of nodes individually. Because of the natural
sparsity of complex networks, recovering local structures
from time series can be converted into a sparse signal
reconstruction problem that can be resolved by using the
lasso, in which both the error control term and the L1 norm

jointly enable robust reconstruction from sparse data.
Insofar as all local structures are ascertained, the whole
network can be assembled by simply matching them. Our
method has been validated by the combinations of three
representative dynamical processes and a variety of model
and real networks with noise and inaccessible nodes. High
reconstruction accuracy can be achieved for all cases from
relatively small amounts of data.
It is noteworthy that our reconstruction framework is

quite flexible and not limited to the networked systems
considered here. The crucial issue is to find a certain
relationship between local structures and measurable data
to construct the reconstruction form Y ¼ ΦX. Indeed, there
is no general manner to establish the reconstruction form
for different networked systems, implying that the appli-
cation scope of our approach is yet not completely known.
Nevertheless, our method could have broad applications in
many fields due to its sparse data requirement and its
advantages in robustness against noise and missing infor-
mation. In addition, network reconstruction allows us

TABLE I. Minimum data for achieving at least 0.95 AUROC and AUPR simultaneously for three types of dynamics, the UG, current
transportation, and communications, in combination with three types of networks, random (ER), small world (SW), and scale free (SF).
Here, N is the network size, hki is the average degree, σ is the variance of Gaussian noise, and nm is the proportion of externally
inaccessible nodes whose data are missing. Data denote the amount of data divided by network size. The results are obtained by
averaging over ten independent realizations. RN denotes resistor network, and CN denotes communication network. More details of the
reconstruction performance as a function of data amount for different cases can be found in Ref. [31].

UG RN CN
N hki σ nm (ER / SW / SF)

100 6 0 0 0.38 / 0.36 / 0.41 0.28 / 0.25 / 0.32 0.30 / 0.28 / 0.30
6 0.05 0 0.44 / 0.43 / 0.47 0.29 / 0.26 / 0.37 0.34 / 0.31 / 0.34
6 0.3 0 1.68 / 1.75 / 1.60 0.32 / 0.29 / 0.38 1.72 / 1.81 / 1.80
6 0 0.05 0.61 / 0.55 / 0.64 1.61 / 1.65 / 1.60 1.33 / 1.19 / 1.32
6 0 0.3 2.33 / 2.03 / 2.14 5.74 / 8.51 / 8.50 5.38 / 6.23 / 6.20
12 0 0 0.46 / 0.47 / 0.52 0.37 / 0 / 35 / 0.42 0.42 / 0.40 / 0.42
18 0 0 0.53 / 0.53 / 0.58 0.44 / 0.44 / 0.50 0.50 / 0.50 / 0.50

500 6 0 0 0.120 / 0.116 / 0.132 0.094 / 0.080 / 0.120 0.094 / 0.088 / 0.100
1000 6 0 0 0.071 / 0.068 / 0.078 0.058 / 0.049 / 0.079 0.055 / 0.050 / 0.055

TABLE II. Minimum data for achieving at least 0.95 AUROC
and AUPR simultaneously for the UG, RN, and CN in combi-
nation with several real networks. The variables have the same
meanings as in Table I. See Ref. [31] for more details.

Networks N hki Data

UG Karate 34 4.6 0.69
Dolphins 62 5.1 0.50
Netscience 1589 3.5 0.07

RN IEEE39BUS 39 2.4 0.33
IEEE118BUS 118 3.0 0.23
IEEE300BUS 300 2.7 0.10

CN Football 115 10.7 0.35
Jazz 198 27.7 0.49
Email 1133 9.6 0.10
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to infer intrinsic nodal dynamics from time series by
canceling the influence from neighbors [31], although this
is beyond our current scope. Taken together, our approach
offers deeper understanding of complex networked systems
from observable data and has potential applications in
predicting and controlling collective dynamics of complex
systems, especially when we encounter explosive growth of
data in the information era.
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