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The spread of an infectious disease can be promoted by previous infections with other pathogens. This
cooperative effect can give rise to violent outbreaks, reflecting the presence of an abrupt epidemic transition.
As for other diffusive dynamics, the topology of the interaction pattern of the host population plays a crucial
role. It was conjectured that a discontinuous transition arises when there are relatively few short loops and many
long loops in the contact network. Here we focus on the role of local clustering in determining the nature of the
transition. We consider two mutually cooperative pathogens diffusing in the same population: An individual
already infected with one disease has an increased probability of getting infected by the other. We look at
how a disease obeying the susceptible-infected-removed dynamics spreads on contact networks with tunable
clustering. Using numerical simulations we show that for large cooperativity the epidemic transition is always
abrupt, with the discontinuity decreasing as clustering is increased. For large clustering strong finite-size effects
are present and the discontinuous nature of the transition is manifest only in large networks. We also investigate
the problem of influential spreaders for cooperative infections, revealing that both cooperativity and clustering

strongly enhance the dependence of the spreading influence on the degree of the initial seed.
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I. INTRODUCTION

The modeling of epidemic dynamics is of paramount im-
portance in the effort to predict when, where, and how far an
infectious disease will spread [1,2]. The topological structure
of the social contact network of the host population turns out
to play a key role in determining the patterns of disease trans-
mission. While most studies have focused on the dynamics of
a single disease, recently there has been a growing interest
in understanding how concurrent epidemics (coinfections)
interact with each other when either multiple pathogens or
multiple strains of the same disease simultaneously propagate
in the same population.

The interaction among pathogens can have either antag-
onistic or synergistic effects. The main mechanism through
which two or more pathogens spreading in the same popula-
tion compete is cross-immunity: An individual infected with
one pathogen becomes partially or fully immune to infection
by the others, thus reducing the pool of susceptible hosts for
secondary infections. The competition between antagonistic
or mutually exclusive epidemics was studied in Refs. [3-6].
The opposite case is the simultaneous spreading of two
or more cooperating pathogens: In this case, an individual
already infected with one disease has increased chance of
getting infected by another. A notable example is the 1918
“Spanish flu” pandemic caused by the HIN1 influenza A
virus. The Spanish flu was the the deadliest pandemic in
modern history, involving about one-third of the world’s
population. Researchers recently realized that the reason why
it was so deadly is that a considerable proportion of the
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infected individuals were coinfected by bacterial pneumonia
[7,8]. Another well-known example of synergistic effects in
disease spreading is the case of HIV, which increases the host
susceptibility to other pathogens, in particular to the hepatitis
C virus (HCV) [9].

In coinfections, positive feedback among multiple diseases
can lead to sudden and major outbreaks: In 1918 the concur-
rence of Spanish flu and pneumonia killed tens of millions
of people within months [10]. One important question in the
study of interacting epidemics is therefore whether cooper-
ation can change the nature of the epidemic transition from
being continuous to being abrupt when external conditions
vary, even slightly, as for a microscopic change in infectivity.

In Ref. [11] a generalized susceptible-infected-removed
(SIR) model was introduced by Chen, Ghanbarnejad, Cai,
and Grassberger (CGCQG) to include mutual cooperative ef-
fects of coinfections: Two different diseases simultaneously
spread in a population and having been infected with one
disease gives an increased probability to be infected by the
other. The amount of this increase is a proxy of the mutual
cooperativity between the two diseases. The authors studied
the model at mean-field level and observed that cooperative
effects, depending on their strength, can cause a change of
the epidemic transition from continuous to discontinuous.
Janssen and Stenull [12] showed that the CGCG model is
equivalent, in mean field, to the homogeneous limit of an
extended general epidemic process (EGEP) and clarified the
spinodal nature of the discontinuous transition observed.

In Refs. [13,14] the CGCG model was simulated on lattices
and random networks, and it was shown that the type of
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transition depends on the contact network topology. The au-
thors concluded that a necessary condition for a discontinuous
transition to occur, when starting from a doubly infected node,
is the relative paucity of short loops with respect to long
ones. A discontinuous transition occurs if the two epidemics
first evolve separately and then meet only after each of the
independent clusters of singly infected nodes has reached a
large fraction of the population. At that point, cooperativity
between the two pathogens enters into play, and both clusters
rapidly become doubly infected. A necessary condition then is
that few short loops are present (otherwise the two pathogens
immediately cooperate and the transition is continuous) and
long loops exist (otherwise cooperativity has no effect and one
sees only single infections). In agreement with this scenario
discontinuous transitions are absent on trees (no long loops)
and on two-dimensional (2D) lattices (many short loops),
while they are observed on Erdds-Rényi (ER) networks, on
4D lattices, and on 2D lattices with sufficiently long-range
contacts [14]. In Ref. [15] we have studied the CGCG model
on uncorrelated power-law networks and shown that in the
scale-free case, i.e., topologies with diverging second moment
of the degree distribution, the transition is always continuous,
even for large cooperativity. On power-law networks with
finite second moment of the degree distribution, the epidemic
transition is instead continuous for low cooperativity, while
it becomes discontinuous when cooperativity is sufficiently
high. Strong size effects are present, so that the real nature
of the transition is difficult to assess in finite systems. All
the observed discontinuous transitions are of hybrid type
[16,17]: At the transition the size of doubly infected clusters
in some realizations jumps discontinuously from zero to a
finite value; however, the fraction of realizations showing such
nonzero clusters grows continuously from zero at the transi-
tion. (For universal mechanisms underlying hybrid transitions
see Ref. [18].)

A model for two cooperative infective pathogens not
conferring immunity, analogously to the CGCG model, was
recently introduced by Chen ez al. [19]. It is based on the
susceptible-infected-susceptible (SIS) epidemic model and
features increased infectivity if the node susceptible to one
pathogen is already infected with the other. By means of
numerical simulations on lattices and homogeneous networks
and of a mean-field approach, Chen et al. have shown that in
this case large cooperativity can give rise to a splitting of the
epidemic transition in two distinct outbreak and eradication
transitions, with associated phenomena of multistability and
hysteresis. For other recent work about cooperating infections
see Refs. [20-22].

Previous work has focused on relatively simple network
structures, where the density of short loops decays to zero
as the system size diverges. In many real-world topologies
instead, in particular those of social origin, two neighbors of a
given node are often mutually connected, and this property
is also observable in very large networks. The clustering
coefficient quantifies the abundance of short loops by mea-
suring how many of the connected triples form a triangle.
According to the physical argument discussed above, one
might hypothesize that increasing clustering could change
the nature of the epidemic transition from discontinuous to
continuous, even with strong cooperativity. In the first part of

this paper we focus on the role of clustering in cooperative
epidemics and test in detail this conjecture. We generate
Poissonian networks with given tunable clustering using the
algorithm introduced by Serrano and Bogufid [23] and study,
on the resulting topologies, the behavior of two cooperating
epidemics diffusing according to the CGCG dynamics. A
recent work [24] has investigated the same issue, but consider-
ing different types of clustered topologies and of cooperative
dynamics. We find that, in the limit of large networks, the
epidemic transition is always abrupt and of hybrid nature:
Extensive clusters of nodes hit by both infections suddenly
start to appear at some critical value of the infectivity, with
a probability that grows from zero at the transition. The total
fraction of nodes belonging to these extensive clusters remains
finite but becomes smaller when increasing the clustering, so
that for large clustering it is hard to assess the nature of the
transition in small systems. Simulations on large networks,
however, clearly show a discontinuous transition also for large
clustering. Our results indicate that although the paucity of
short loops is a necessary condition to observe the discontinu-
ous epidemic transition, increasing the density of short loops
just by tuning the clustering does not guarantee a change of
the nature of the transition to a continuous one.

In the second part of the paper we briefly discuss the
problem of spreading influence for coinfections, i.e., how
the probability that a macroscopic outbreak occurs depends
on which node triggers the coinfection event. We find that
cooperativity enhances the extent to which large degree nodes
are more influential than low degree ones. This effect of
degree on spreading influence is further increased when the
underlying network is clustered.

II. THE MODEL FOR COOPERATIVE SIR DYNAMICS

Compartmental models are in epidemiology the main
mathematical framework for the study of disease spread.
In these kinds of models the population is divided into
“compartments”—in the simplest case, susceptible to the
infection (S), infected by the pathogen and able to transmit
it (I), and recovered or removed (immune) (R)—that inter-
act according to rules based on phenomenological assump-
tions. Compartmental models branch in two large classes,
depending on whether permanent immunity may occur. In-
fectious diseases where recovery confers immunity, such as
measles, mumps, and rubella, are modelled by susceptible-
infected-removed—(SIR) type dynamics [25]: Infected indi-
viduals transmit the infection to each of their susceptible
neighbors with some probability while spontaneously recover
with some other probability. In this case maintaining an
endemic level of infection is impossible in a closed population
due to the depletion of susceptible individuals as the epidemic
spreads through the population. Other infections, such as
the common cold and some sexually transmitted diseases,
do not confer any long-lasting immunity, and after recovery
individuals become susceptible again. These epidemics are
modelled by the SIS [1] type of dynamics: The difference with
SIR dynamics is that when infected individuals spontaneously
recover they become again susceptible. In this paper we only
deal with infections conferring permanent immunity, modeled
by SIR dynamics.
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In the classical SIR model in discrete time, at each time
step each infected individual spontaneously decays with prob-
ability r into the removed state, while transmitting the in-
fection to each susceptible neighbor with probability p. The
cooperative SIR dynamics that we consider (CGCG model)
is an extension of SIR to two circulating diseases, A and
B, as in Ref [11]. The infection probability for one disease
is increased if the individual already contracted the other
disease (even if currently recovered): Individuals uninfected
with either disease get infected (with either A or B) by any
infective neighbor with probability p, while a node that is
currently infected or has been infected in the past with one
of the two diseases has a higher probability g > p to get
infected by the other disease through the neighbor. When
recovering from one disease an individual becomes immune
to it but can still be infected by the other. We assume the
same recovery probability r for both diseases, and therefore
the model is totally symmetric with respect to A and B. Since
each individual can be in one of three possible states (S, I, R)
with respect to each of the two diseases (A, B), there are nine
possible states for each individual, denoted as S, A, B, AB,
a, b, aB, Ab, and ab, where, for each disease, capital letters
refer to the infected state, while lowercase letters refer to the
removed state. States denoted by single letters (a, b, A, B)
imply that the individual is still susceptible with respect to the
other disease.

III. NETWORKS WITH TUNABLE CLUSTERING

In order to perform a detailed analysis of the effects of the
topology on the epidemic dynamics, we generate networks
with tunable clustering to use as contact networks for the
epidemics. To build such networks we use the algorithm
introduced by Serrano and Boguiid in Ref. [23]. The Serrano-
Boguiid algorithm shares the same philosophy of the classical
configuration model to generate maximally random networks
of fixed size N with given degree distribution P (k) and given
average clustering coefficient c(k) for each class of nodes of
degree k. Precisely, c(k) denotes the average clustering among
all nodes with degree k:

1 & o7
olk) = Nkle(k—l)’ M
where N is the number of nodes with degree &, T; is the num-
ber of triangles node i belongs to, and the sum Z(k) runs over
all nodes with degree k. The mean clustering coefficient is
then derived by averaging the ¢(k) with the degree distribution
asc =Y, P(k)c(k).

The algorithm is divided into three steps: (i) assigning
a degree to each node and a number of triangles to each
degree class according to the given distributions, (ii) closing
triangles, and (iii) closing the remaining free stubs as in the
classical configuration model. More in detail, in the first step,
to each vertex is assigned a degree according to P(k) by
attaching to it a certain number of stubs (half links). Also,
to each class of vertices with degree k is associated a number
of triangles according to the given average clustering coeffi-
cient ¢;. In the second step, stubs are paired (and eventually
unpaired) to form triangles according to specific rules until
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FIG. 1. (a) Degree distribution generated by the Serrano-Boguifid
algorithm using a Poisson degree distribution with average degree
z =4 (red circles). The red solid line represents the preassigned
distribution. (b) Clustering distributions of the Poisson networks
generated by the Serrano-Bogufid algorithm (symbols). Solid lines
represent the preassigned clustering distributions which are c¢(k) =
co(k — 1)™, with p = 0.6. From bottom to top, the points rep-
resent clustering for networks with ¢ = 0.2 (red circles), ¢y = 0.4
(blue squares), ¢y = 0.6 (magenta diamonds), and ¢y = 0.8 (black
triangles), respectively. Data are obtained by averaging over 200 re-
alizations. The network size is N = 103. The parameter S, regulating
the assortativity is fixed to Sy = 0.1.

each degree class has the desired number of triangles. In this
step a parameter B determines the way stubs are chosen. This
parameter ranges in the interval [0, 1] and has the effect of
tuning the level of assortativity in the network: The clustering
of high degree nodes is limited by the presence of degree cor-
relations in the topology. As By approaches 0, more assortative
networks are produced, which can accommodate stronger
local clustering for nodes with large k. In the third step of the
algorithm the remaining unpaired stubs are finally closed into
links by applying the classical configuration model algorithm,
i.e., connecting randomly selected pairs of free stubs, and sus-
pending the restriction on the assigned triangle number. There
are a number of caveats to be considered for the algorithm to
work; for further details we refer to the original paper.

In Fig. 1(a) we show that the distributions characterizing
the networks obtained as the outcome of the Serrano-Boguiia
algorithm closely reproduce the distributions given as input.
In these examples the algorithm is started with a Poissonian
degree distribution P (k) = (]Z)(z/N)k(l — z/N)N=0_ where
the number or nodes N and the average degree z = (k) are
fixedto N = 10°, and z = 4, and with a clustering distribution
of the form c(k) = co(k — 1)™* with «( fixed to g = 0.6
and varying cg. The value of the parameter By, which, as
explained in Ref. [23], tunes the assortativity, is fixed to
Bo = 0.1. The parameter ¢y sets the overall clustering level of
the network and is the key parameter in our analysis. A value
of ¢y = 0 means that no clustering is imposed beyond the one
naturally occurring for Poissonian networks. In what follows
we use networks produced by the Serrano-Boguiid algorithm
as contact patterns for the cooperative SIR dynamics. By
tuning the ¢y parameter we investigate the effect of loops and
clustering on the epidemic spreading. All other parameters are
kept fixed at the values of Fig. 1.

IV. THE NATURE OF THE EPIDEMIC TRANSITION

We simulate the mutually cooperative SIR dynamics ruled
by the CGCG [11,13] model, as defined in Sec. II, with two
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pathogens, A and B. At each time step, each singly infected
node representing an individual infected with either A or B
attempts to transmit the pathogen to each of its neighbors
that are susceptible to it. The transmission is successful with
probability p if the neighbor is healthy (in the S state) and with
probability g > p if the neighbor has already been infected
with the other pathogen, even if it has already recovered.
After attempting the contagion, with probability r the singly
infected node recovers from the disease and goes into the
R state. In the limiting case ¢ = p the cooperative effect
vanishes and the two pathogens spread independently from
one another.

In a similar way, each node in the AB state, represent-
ing a doubly infected individual, attempts to transmit both
pathogens to each of its neighbors and succeeds in infecting
healthy (S) nodes with just one disease with probability p,
and with both diseases simultaneously with probability p>.
Singly infected neighbors instead get doubly infected with
probability ¢g. The doubly infected node that has attempted the
contagion recovers from either disease shifting into a singly
infected state with probability r, while it recovers from both
diseases simultaneously, shifting into the ab state with prob-
ability r2. In all simulations, unless otherwise stated, we fix
r = 1 (for both pathogens) and ¢ = 1, which is the maximum
possible value of the cooperativity. Unless explicitly stated,
we start the system with all individuals in the susceptible (S)
state, except for one randomly chosen individual who is in the
doubly infected AB state.

For small values of p only small outbreaks occur, reaching
a finite number of individuals. As p is increased above the
epidemic transition another type of outbreak appears: large
outbreaks of size proportional to N. The probability to have a
large outbreak grows continuously from zero at the transition.
For this reason the fraction p,;, of doubly recovered nodes in
the final state averaged over all realizations is not useful for
discriminating among a continuous and a hybrid transition, as
it necessarily changes continuously. In order to discriminate
we study the behavior of the average (po,,) computed only
on large outbreaks. Clearly, the distinction between large and
small outbreaks is clear-cut only in the infinite-size limit.
We operatively define such realizations as those for which
in the final state p,;, > T, where T will be specified below.
Therefore the order parameter for the transition is the average
value (p,p), where the average is computed only over the
fraction P, of realizations fulfilling the condition p,;, > T.

In Fig. 2 (left) we plot the final fraction of population in the
doubly recovered state (p,;) for each realization and in Fig. 2
(right) the probability P, that p,, > T. When clustering is
small, the figure shows a clear discontinuous change: At a
critical value of p some realizations with large p,, start to
appear. In these runs the two pathogens, starting from the
same doubly infected node, manage to separately infect large
clusters prior to get in contact with each other. At some point,
they meet along a large loop and this exposes large singly
infected portions of the population to the coinfection that
diffuses fast given the large coinfectivity, leading to large
final values of p,,. When clustering is increased, the jump
becomes smaller: The abundance of short loops makes it hard
for the two epidemics to develop separated clusters. For very
high clustering the height of the jump seems to go to zero,
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FIG. 2. Results for a single doubly infected seed. (a) Final frac-
tion of population in the doubly recovered state (ab) versus p for
networks of size N = 10* and different values of cy. Each point is
a single realization. There are 200 realizations for each value of p.
Values of p are increased by intervals Ap = 0.002. (b) Probability
P,, that p,;, > T = 0.005. Initially, all nodes are susceptible except
for a randomly selected node which is in the doubly infected state.

but the nature of the transition cannot be assessed by visual
inspection: Data are inconclusive at this system size.

To better understand the interpretation in terms of loop
structure we compare the above results with the case where the
epidemic is initiated with two singly infected nodes, chosen
randomly, but constrained to be at a minimum distance from
each other. For coinfections to occur two large clusters of
singly infected nodes must necessarily develop first and then
meet. In this case, data show always a large discontinuity for
pap and only a weak dependence on the clustering (see Fig. 3).
As expected, the presence of short loops does not play any
major role, in agreement with the physical interpretation in
terms of loop structure.

Starting the system with a single doubly infected seed, we
inspected the temporal evolution of the densities of infected
nodes (Fig. 4) in two realizations leading to large epidemics,
for a value of p above and around the threshold, in a system
of size N = 10°. For no clustering [Fig. 4 (top)] there is an
initial transient during which p,, = 1/N (the initial seed)
while p, and p, rapidly grow, witnessing the formation of
large singly infected clusters. Around ¢t = 15 the two clusters
meet over a long loop and rapidly coinfection takes over.
For large clustering [cop = 0.8; Fig. 4 (bottom)] the dynamics
starts in a way similar to what one would expect in a con-
tinuous transition: A and B infected clusters are intertwined

0
0O 01 02 03 04 05 0
p p

0.1 02 03 04 05

FIG. 3. Results for two distinct singly infected seeds. (a) Final
fraction of population in the doubly recovered state (ab) versus
p for networks of size N = 10* and different values of ¢,. Each
point is a single realization. There are 200 realizations for each
value of p. Values of p are increased by intervals Ap = 0.002.
(b) Probability P,, that p,, > T = 0.005. Initially all nodes are
susceptible except for two singly infected nodes randomly selected
provided the distance between them is larger than 8.
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FIG. 4. Temporal evolution of densities of singly or doubly
recovered nodes (states a, b, or ab, respectively) for cooperative
SIR dynamics around the threshold (p = 0.25). The network has
size N = 10°. Initially all nodes are susceptible except for a sin-
gle randomly-selected node which is in the doubly infected (AB)
state.

and immediately after being infected by one pathogen each
node is also hit by the other. As expected according to the
interpretation given in Refs. [13—15], the abundance of short
loops causes the two epidemics to meet frequently on the
networks and hampers the independent development of single
disease clusters. After a while, however, doubly infected
nodes appear, and the evolution becomes more similar to the
co = 0 case, indicating that a similar scenario, with merging
singly infected clusters, occurs, although on a smaller scale.
Even by looking closely at the dynamics, the behavior of the
system in the high-clustering regime is not clear-cut, and to
identify the nature of the transition a finite-size analysis is
needed.

As observed in Ref. [15] finite-size effects might be impor-
tant and conceal the real nature of the transition: To analyze
the effect of network size we simulate the cooperative SIR
dynamics on networks of different sizes: for no clustering
(co = 0) and high clustering ¢y = 0.8. For each value p of
the single disease infectivity parameter we simulate N, = 103
realizations of the process starting with a randomly chosen
doubly infected (AB) seed. For each realization we determine
the final density p,; of nodes in the ab state, and the probabil-
ity P, that p,;, > T = 0.05. After checking the results of p,
for single realizations we fixed the threshold at 7 = 0.05 and
checked that the results are unchanged when T is halved. This
ensures that the p,;, values are clustered around zero or around
some finite value and that a sensible gap exists between them.
We then compute the average value (p,;) restricted to values
Poap > T.Results are shown in Fig. 5. In both cases we observe
a hybrid transition: The probability P,;, of reaching a finite
value of p,, undergoes a continuous transition for p = p, ~
0.25; on the other hand, the size of the doubly recovered (ab)
cluster in those realizations jumps discontinuously to a finite
value at the transition. Large outbreaks can develop in finite
systems also below threshold; however, the probability that
they occur vanishes as N — oo. The jump is smaller in the
high-clustering case, where the discontinuity is clearly shown
only when large-enough networks are considered [Fig. 5(c)].
We conclude that the tendency toward a continuous transi-
tion observed in Fig. 2 for large cooperativity as ¢y grows
is a finite-size effect. No matter how strong the clustering

0. 0.4
(@) (b)
06 - N=10°
—— N=3x10°
A N=10° ,
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FIG. 5. Results of simulations for zero (cop = 0) and high (¢ =
0.8) connectivity and different system sizes. Panels (a) and (b) are
the results for ¢, = 0 for networks of sizes N = 3 x 10*, 10°, 3 x
10°, 10°. For each value of N the data are averaged over 10° real-
izations: (a) shows the average final fraction (p,;) of the population
in the doubly infected state (AB) for large outbreaks versus p; (b)
shows the probability P, that p,, > T = 0.05. Panels (c) and (d)
show the same quantities for the case of large clustering, ¢y = 0.8.
Values of {(p,;) are not plotted if the number of realizations to be
averaged is less than 10.

the transition is discontinuous in the large-size limit. The
discontinuity arises from the coalescence of independently
grown singly infected clusters. If p is below the threshold
value for single epidemics, then such extensive singly infected
clusters cannot develop and coinfectivity does not play any
role. Consistently with this physical interpretation, the value
of p marking the threshold for coinfections coincides with
the threshold for single pathogen epidemics. This threshold
slightly increases with the level of clustering cy.

For comparison, we repeat a similar analysis for the case of
weak cooperativity (¢ = 0.4) and large clustering (co = 0.8).
In this case the transition remains continuous also in the large-
size limit, as shown in Fig. 6. For each system size and for
each value of p the results are averaged over 10° realizations.

0.4 0.4
(a) (b)
= N=10° = N=10°
o N-3x - N=3x10°
N N=10 N=10°
b
S 02
\2
o e
0.2 0.25 0.3 0.35 0.2 0.25 0.3 0.35

P P

FIG. 6. Results for ¢ = 0.8 and g = 0.4 for networks of sizes
N =10°,3 x 10°, 10°. For each value of N the data are averaged
over 10° realizations. (a) Average final fraction (o, in the doubly
recovered state (ab) for large outbreaks versus p; (b) probability P,
that p,, > T = 0.002. Values of (p,;) are not plotted if the number
of realizations with p,, > T is less than 10.
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FIG. 7. Histograms of p,, in the doubly recovered state (ab)
for N = 10° (dotted lines) and N = 10° (solid lines) and N, = 103
realizations. Top: ¢ = 0.8 and ¢ = 1.0. Each peak corresponds to
a value of p starting with p = 0.27 for the rightmost one and
decreasing of Ap = 0.005 at each curve. The main is in lin-lin
scale, and the inset is the same plot in lin-log scale. Sharper peaks
on the right correspond to the larger system, while on the left they
are suppressed as the system size increases, indicating a critical
value of p around 0.25. Bottom: ¢ = 0.8 and ¢ = 0.4. Each peak
corresponds to a value of p starting from right with p = 0.35 and
decreasing of Ap = 0.01 at each curve. The main is in lin-lin scale,
and the inset is the same plot in lin-log scale. Sharper peaks corre-
spond to the larger system. In this case, peaks corresponding to the
larger system are never suppressed, consistently with a continuous
transition.

Further evidence on the nature of the transition is given by
inspecting the distributions of p,; at fixed p. In the case of
high infectivity, even when clustering is high, the distribution
shows a secondary peak around a finite value of p,, that is
suppressed when the system size grows for p below a thresh-
old value around 0.25. Figure 7 (top) shows the distributions
for the case ¢ = 0.8 and two system sizes, N = 10° and
N =10, for N, = 10’ realizations. Each peak corresponds
to a value of p starting with p = 0.27 for the rightmost one
and decreasing of Ap = 0.005 at each curve. The position of
the peaks does not depend on the system size, as also shown
in Fig. 5, where the curves for different N perfectly overlap.
Fluctuations decrease with the system size and sharper peaks
correspond to the larger systems. The same data are plotted

in lin-log scale in the inset of the top panel of Fig. 7: Above
some critical value of p (around 0.25) the height of the peaks
grows for larger N; for p < 0.25 the peaks tend to disappear
as N is increased. This is the signature of a discontinuous
transition. The bottom panel of Fig. 7 shows the same kind of
plots, always for ¢y = 0.8 but for small coinfectivity, g = 0.4.
Each peak corresponds to a value of p starting from the right
with p = 0.35 and decreasing of Ap = 0.01 at each curve. In
this case peaks corresponding to the larger system are never
suppressed, consistently with the occurrence of a continuous
transition.

In a recent work by Chung et al. [24], a model similar to the
CGCaQ, the EGEP, is found to have a hybrid transition for large
cooperativity in clustered systems. Our results globally go
along the same lines. However, at odds with our results, in that
work the transition remains continuous for some particular
values of the parameters determining the topology, even for
the highest possible cooperativity level. This discrepancy may
be due to differences in the epidemic dynamics, since, as
pointed out in Ref. [12], the mapping of the CGCG model
onto the EGEP model only holds within mean field.

V. INFLUENTIAL COINFECTION SPREADERS

In this section, we investigate the problem of identifying in-
fluential spreaders for coinfections. For single spreading pro-
cesses this issue has attracted a lot of interest in recent years
[26,27]. The problem is the following. The values of p(p), the
average outbreak size, generally considered to study the phase
diagram, are obtained by averaging over many outbreaks, each
starting in a randomly selected seed. However, this quantity is
likely to depend to some extent on the precise location where
the infection is seeded. For example, it is reasonable to expect
that nodes with many neighbors will typically originate larger
outbreaks. Is it possible to predict the spreading influence
of node i, i.e., the average size of outbreaks generated by
it. Is it possible at least to identify topological properties
of individual nodes that are correlated with their spreading
influence? It is clear that degree is positively correlated with
p(p), but the detailed structure of the contact pattern makes in
some cases centralities such as the k-core index, betweenness
or eigenvalue, or other centralities better predictors of the
spreading influence [27]. The mapping of SIR dynamics to
bond percolation [28-30] allows us, at the epidemic threshold
p = pc, to identify the nonbacktracking centrality [31] as
the exact solution (i.e., a centrality perfectly correlated with
the spreading influence) on locally treelike networks [32].
On the same type of topologies, the spreading influence of
each individual node can be exactly calculated for any value
of p by message-passing techniques [33]. For cooperating
epidemics, the problem is slightly different. As the transition
is discontinuous, the most interesting observable is the prob-
ability P, (i) that seeding the double-infection in node i will
generate a macroscopic double-infection outbreak. We have
simulated the coinfection process with initial condition given
by a doubly infected seed in each node of the network for
a value of p immediately above the epidemic transition. We
have computed the fraction of times an outbreak of relative
size larger than 7 = 0.15 is produced and the average size
of these macroscopic outbreaks. We have then averaged the
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FIG. 8. Results from simulations on networks with ¢y = 0 (red)
and ¢y = 0.8 (black), with p = 0.255. System size is N = 10° (filled
symbols) and N = 10° (empty symbols). Main: probability P, that
a double-infection started in a node of degree k originates a macro-
scopic outbreak. Inset: Average relative size of the macroscopic
outbreaks when the infection is seeded in a node of degree k.

results over nodes with the same degree k (see Fig. 8). In
the absence of clustering, the probability to give rise to a
macroscopic outbreak is proportional to the square of the node
degree. In the presence of clustering instead the probability
P,;, is overall smaller, but its growth with k is much faster.
In both cases the size of the extensive coinfection is, with
remarkable accuracy, independent from k.

This behavior can be rationalized in the light of our under-
standing of the physical origin of large outbreaks for cooperat-
ing infections. Let us first consider unclustered topologies. For
a large outbreak to occur one needs the separate development
of two single epidemics along different directions. The size
of each of them is on average proportional to the degree k
of the seed node. Hence the probability that they meet is
proportional to k2. Once the two infections have met, the
coinfection rapidly spreads throughout the network. This last
part of the process clearly does not depend on the degree of the
initial seed. In the presence of local clustering it is much more
difficult for the two single epidemics to evolve separately be-
cause of the presence of triangles. This explains the reduction
of P,, with respect to the unclustered case. However, since the
clustering coefficient strongly decreases with k (see Fig. 1) the
spreading influence of nodes grows fast with the number of
neighbors. Also in this case the formation of the macroscopic
outbreak after the two independent epidemics have met does
not depend on local properties of the seed node, i.e., it is
independent from k.

VI. CONCLUSIONS

In Ref. [13] it was shown that the type of transition
depends on the topology of the network. It was suggested
that necessary conditions to observe a discontinuous transition
when starting from a doubly infected node are the paucity
of short loops coupled with the existence of long loops. A
discontinuous transition occurs if the two clusters of singly

infected nodes spread independently and then meet, rapidly
becoming doubly infected due to large cooperativity. The
authors concluded that this can happen if few short loops
are present (to allow the growth of two independent single—
infection clusters) and long loops exist (to allow the two
clusters to meet). Based on this physical picture one can
hypothesize that in topologies with many short loops the two
diseases do not have the possibility to spread in independent
regions; from the beginning they form a single doubly infected
cluster that, similarly to the single disease case, gives rise to a
continuous transition as infectivity is increased.

We have analyzed the effect of local network clustering on
the spreading of two concurrent cooperating diseases under
SIR dynamics, i.e., infections conferring permanent immu-
nity. A detailed analysis has been performed by means of
numerical simulations on Poissonian contact networks with
tunable clustering. Our simulations show that increasing the
number of loops of length 3, i.e., the local clustering, does
not produce this effect. The epidemic transition remains dis-
continuous, although the size of the jump is reduced when
clustering is increased. The nature of the transition is evident
only in large networks, while for small sizes it is blurred by
fluctuations.

The observed behavior suggests the following refined
physical picture that builds on the one proposed in Ref. [13]
and further clarifies the role of the network loop structure
in determining the nature of the transition. We hypothesize
that it is still possible to observe an abrupt transition when
short loops abound, as long as a gap exists between short
and long loops. The proposed scenario would explain the
above finite-size effects in high clustered networks as follows.
In large systems with high clustering there are many loops
of length 3; however, longer loops but still smaller than the
network diameter, that is, of order log N, are scarce. Their
number decays as 1/N. Although rare, single epidemics that
manage to escape the structure of loops of length 3 can
therefore grow independently before they meet. For small
networks, however, the loop structure is not so well separated
in small and large loops for two reasons: On the one hand,
the diameter is smaller; on the other hand, also loops of size
smaller than log N become more abundant. In this case, single
epidemics that do not meet along loops of length 3 have some
probability to meet along loops of intermediate length. This
makes the distribution of p,; broader, and the discontinuous
transition more difficult to identify. It would be interesting to
investigate the role of the loop structure of the network beyond
the clustering in cooperative coinfections.

Concerning spreading influence for coinfections, our re-
sults for unclustered networks nicely fit with the physical
picture outlined above. The k*> dependence of P, on the
seed degree is perfectly consistent with the scenario of two
single infections evolving separately and then meeting. Also
the stronger growth with k in the presence of clustering
can be interpreted along the same lines, as the effect of the
reduction of the local clustering coefficient with the degree
of the seed. In both cases the effect of the degree on the
spreading influence of a node is much stronger than for
single epidemics. Hence it is even more crucial in this case
to monitor and possibly immunize hubs in order to prevent
extensive coinfection outbreaks in the system. It would be
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extremely interesting to attack these problems, analyzed here
by means of numerical simulations, using message-passing
techniques.
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