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Abstract
Recent years havewitnessed a growing interest in analyzing a variety of socio-economic phenomena
usingmethods from statistical and nonlinear physics.We study a class of complex systems arising
from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of
online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a
general feature of the bid price distribution: an inverted J-shaped functionwith exponential decay in
the large bid price region. To account for the distribution, we propose amulti-agentmodel inwhich
each agent bids stochastically in thefield of winner’s attractiveness, and develop a theoretical
framework to obtain analytic solutions of themodel based onmeanfield analysis. The theory produces
bid-price distributions that are in excellent agreementwith those from the real data. Ourmodel and
theory capture the essential features of human behaviors in the competitive environment as
exemplified by LUBA, andmay provide significant quantitative insights into complex socio-economic
phenomena.

1. Introduction

In recent years, theories andmethods of statistical and nonlinear physics have been used to understand a variety
of complex social and economical phenomena [1–10]. For example, stochastic accelerationwas used tomodel
the interacting forces between pedestrians andwalls to gain significant insights into panic and crowding
behaviors [2], the classical Ising spinmodel was adopted to describe the decisionmaking processes in a closed
community [3], and the radiationmodel without artificial parameters was used to predict themobility patterns
ofmigration processes among states in theUS [4]. Also, the basicmechanism of emergence of wealth
distribution can be understood using the analogy of energy transfer in particle collision [5]. In thefinancial
market,models of stochastic processes such as randomwalk and lévy flies were often studied [6].

In statistical physics, properties of themacroscopic quantities are obtained from the behaviors of a large
number ofmicroscopic particles. In complex social and economical systems, certainmacroscopic quantities can
bemeasured, leading to large scale, empirical data sets. To probe into the complex dynamics of such systems, an
effective approach is then to construct ‘microscopic’models to describe the dynamical behaviors of individuals
or agents, with the goal to predictmacroscopic behaviors [9]. Agreement between themodel prediction and real
data can be taken as a plausible indication that themodel correctly captures the essential dynamics of the
underlying system.Guided by this basic principle from statistical physics, in this paper we study a class of
complex economical systems: online auction systems forwhich a large amount of empirical data is available.
Specifically, we focus on amodern formof auctions, called the lowest unique bid auction (LUBA). Different
from the traditional auctions (e.g., English andDutch auctions), LUBA allows thewinners to gain expensive
items at a considerably low entrance fee [11], provoking individuals to participate in the ‘game’ enthusiastically.
A basic quantity to characterize the dynamics of any auction process is the bid distribution. In LUBA, similar to
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the ‘lowest unique positive integer game’ (LUPI) [12, 13], the player who offers the lowest unique bidwins
the game.

There is a difference between LUBA and LUPI. That is, LUPI is free to join, which accepts only integer
numbers in bidding, but LUBA requires an entrance fee and thewinner is required to pay a bid price to obtain an
item.However, players in both LUBA andLUPI are facedwith the same essential strategic conflict: preferring
lower bid price while trying to avoid overcrowded bid price [13]. Similar bid distributionswere observed from
empirical data of both LUBA and LUPI [12–15].

To understand the basicmechanism for the bid distributions in LUBA and LUPI processes, a number of
mathematicalmodels based onNash equilibrium (NE)were proposed [12, 14–17]. For example, the two
extreme cases of LUPI inwhich all players behave rationally or randomly [12]were analyzed, and the optimal
strategy for rational biddingwas identified. A framework of symmetricmixed-strategy equilibriumwas
proposed to study LUBA, and the equilibrium solutionwas numerically obtained through the theory of non-
stationaryMarkov chains [14]. Also, it was suggested that the symmetricNEwith the lowest expected gain
should be optimal among symmetric strategies [15]. The uncertainties about the number of players was assumed
to obey the Poisson distribution and aNEmodel was then proposed based on the assumption that the expected
payoff is independent of the bid prices [16]. Quite recently, amodel assuming that players prefer to bid the price
for higher probability of winningwas proposed [17]. To summarize briefly,most previous quantitative works
were based onNE, assuming that perfect information is available for all players. However, in realistic situations,
the decisionmaking of players would inevitably be based on partial or imperfect information. In fact, significant
deviations from theNEhave been observed recently from real data [18].

Intuitively, the interactions among agents in a complex social-economical systems bear certain resemblance
tomany-body interactions in statistical physics.Multi-agentmodels formulated in this spirit have proven to be
able to generatemore accurate characterization of real social-economical systems [19]. In such amodel, each
agent acts according to its current state, the surrounding environment, and certain rules governing its behavior.
The basic principle is familiar in statistical physics: searching for and analyzing the emergence ofmacroscopic
patterns from local, ‘microscopic’nonlinear interactions among agents [9]. In general, multi-agentmodels can
be used to study awide range ofmicroscopic nonlinear interactions in socio-economic systems by reproducing
and providing reasonable understanding of emergence of a rich variety of empirically observed phenomena at
the global level [2, 3, 7, 19, 20]. This provides themainmotivation for our present work: to construct amulti-
agentmodel to simulate the complex auction systems and to develop a statistical-physics based analysis to
understand the behaviors of ‘macroscopic’ quantities, in particular the empirically observed bid price
distributions.

Ourmain results and their significance are the following.Wefirst analyze two large online auction data sets.
Wefind that, in spite of the apparent differences between the circumstances inwhich the data sets were
generated, such as those in currency requirements and participants, the qualitative features of the bid
distributions are essentially identical. This implies that the systems under the LUBA rule that the player who
makes the lowest bid among unique oneswins the game, have the ability to self-organize to generate a stable bid
price distribution that is likely to be universal.We then construct amulti-agent gamemodel based on the LUBA
rule, inwhich agentsmake decision in the field of winner’s attractiveness. Simulations of themodel reproduce
the empirically observed bid distributions. To pin down the dynamicalmechanisms for the bid distributions, we
develop ameanfield theory. Through a self-consistency analysis, the theory yields bid distributions that are in
excellent agreement with those fromboth empirical data and ourmulti-agentmodel. The outcomes of our
statistical-physics inspiredmodel aremore accurate than those from any existingmathematicalmodels of
auction systems, providing deeper insights into the fundamental dynamics underlying complex auction systems
in amodern society.

2.Data source, bid distribution characters andmodel

2.1.Data collection and process
The data sets used in this paper were downloaded from twowebsites:www.auction-air.com andwww.
uniquebidhomes.com. The auctions on the twowebsites were performed in British Pounds andUSDollars,
respectively.Moreover, theminimumunit of bid price on the first website is one Pound, while the second
website requires theminimumunit to be cent. The historical information of the auctions recorded on these
websites includes two categories: (1) general information such as the valueV of the item, entry fee c, minimum
bid price k, numberN of bids (or participants), and (2) the bid price k offered by each participant and the
winner’s bid k*.

To be as general as possible, we chose six different types of items varying frommobile phone to digital
camera of different valuesV. For each item, the auctionwas performed forR rounds. The corresponding six data
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sets are labeled as (a)–(f), respectively, and the related information is listed in table 1, where (a)–(d) are from the
first website and (e), (f) are from the second.

2.2. Bid price distributions
Due to the various sources of randomness involved in the decisionmaking process, the bids offered by different
agents participating in the same LUBAwill in general be different. If the number of agents is statistically
significant, the bid price can effectively be regarded as a randomvariable, with its probability distribution
depending on the game setting/parameters. Figure 1 shows the bid distributions, denoted by fk, obtained from
six data sets of LUBAs (black bars).

In spite of thefluctuations caused by thefinite number of bids, the distributions exhibit some general
features that are independent of the particular details of the games such as the actual item values and the number
of participants in the auctions. Interestingly, the lowest bid is not selectedwith the highest probability, and all
distributions exhibit an inverted J-shaped curves, i.e., the bid probability increases non-monotonously for small
bid price, reachesmaximum for somemediumbid price, and decays to zero in the large price region. For
example, in the data sets (a), (e), (f), themost probable bid price is £ 7, $0.17, and $0.11, respectively. For the data
sets (b), (c), (d), themost probable bid price is about £17.

Intuitively, the inverted J-shaped distribution can be attributed to users’ efforts to bid less but to avoid biding
the same as others [13], as driven by the rule that the lowest unique bidwins. Each participant thus seeks to bid at
price as low as possible, so a bid originally regarded as low by some agentmay in fact not be ‘low’ enough towin
the game, as the bid prices offered by some other agents could be lower. As a result, the collective behaviors of the

Table 1.Basic parameters of the six online auction data sets
studied in this paper.

Data sets Value (V) #Bid (N) #Rounds (R)

(a) 300 98± 3 7

(b) 499 135 19

(c) 2000 193± 7 8

(d) 699 199 16

(e) 199 160± 10 3

(f) 1000 310 6

The valueV of the items, the total bid numberN
in each round of game, and the number of
roundsR for the auction performed.

Figure 1.Distributions of bid prices from real data. Distributions from six real data sets (black bars) and exponential fittings to the tails
of the distributions (black solid curves). The estimated exponential fitting indices in (a)–(f) are a 0.13ˆ = , 0.10, 0.09, 0.16, 0.04, and
0.02, respectively. Also shown for comparison are the distributions from simulation of ourmulti-agentmodel (red open circles) and
the corresponding predictions from themean-field self-consistent equations (blue dashed curves). The subplots are in liner-logarithm
coordinates.
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agents tend to self-organize into a non-monotonous distribution as exemplified infigure 1. The exponential
decay of the probability in the large bid price region is in fact a general feature induced by the LUBA rule [16].
The tail region of each distribution can bewellfit by the exponential function f ek

ak~ - , represented by the
black solid curves infigure 1, where the values of the exponential parameter a for the data sets are listed in table 2.

2.3.Model of LUBAdynamics
In spite of some subtle differences, the online settings of LUBAs (or LUPIs) that determine the game outcomes
are the following. (1)The valueV of an item and the targetmaximumnumber of bids,N, are known to all agents,
whereN is the total number of players if each bids once. (2)The bid price, denoted by k, is discrete and
constrainedwithin the interval k k,[ ¯], where k 0> . (3)The outcome of the game is calculatedwhen allN bids
are placed, and the participant whomakes the lowest bid among the distinct ones (denoted by k*)wins the game.
Additionally, a constant entry fee c is required for each bid (c 0 ), which is identical for all players and thus will
not affect the outcome of the game. Assuming that each participant bids once in each round of the game, we have
that the payoff of the exclusive winner isV k c*- - (with the bid k* subtracted off), while all the other
participants get the identical payoff c- . The rational upper bound of bid price k is k V c¯ < - , ensuring positive
payoff for thewinner.

Our construction of a computationalmodel for the LUBA auction process benefits from the fact that a host
of social and economical behaviors can be described by theminority gamemodel [21–37], amulti-agentmodel
characterizing a population of selfish individuals competing for limited common resources. The similarity
between LUBA auction process and those described by theminority gamemodel suggests strongly the suitability
of usingmulti-agentmodels to understand the LUBA auction dynamics.Without loss of generality, we discuss
the casewhere the bid interval is normalized to unity and each agent adapts his/her bid k step by step in the
discrete space of bid price. Ourmodel is schematically shown infigure 2, with the following detailed setting: the
auction is performed iteratively and, in each round, the agent who bids the lowest unique k*wins the game. Each
of theN agents acts based on the historical informationwith probability p (whichwe name as the attracting
probability), or acts without any informationwith the probability p1 - . In the former case, thewinner’s bid k*

Table 2. Fitting parameters in the bid distributions from the six data sets.

Data sets p (std.) KS R2
â a p ln

p

p

1 2

1
( ) ( )¢ = +

-

(a) 0.046 (0.013) 0.059 0.895 0.13 0.136

(b) 0.034 (0.007) 0.029 0.963 0.10 0.100

(c) 0.025 (0.004) 0.045 0.903 0.09 0.089

(d) 0.058 (0.012) 0.030 0.943 0.16 0.170

(e) 0.015 (0.001) 0.038 0.912 0.04 0.045

(f) 0.006 (0.001) 0.055 0.904 0.02 0.018

The attracting probability p is obtained through theminimumKS
value in fitting themodel generatedwith real bid distributions. The
coefficient of determinationR2, and theKS coefficient are listed. The
exponent â is obtained from fittingwith the tail region of the real bid
distributions, and the exponent a p( )¢ as a function of p is obtained

analytically.

Figure 2. Schematic illustration of agent interaction patterns in our proposedmulti-agentmodel for LUBA auction dynamics. During
the auction process each agent either adapts his/her bid towards thewinner’s bid k*with probability p ormove randomly with the
probability p1 - in the discrete bid space.
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in the last round forms afield that attracts the agents towards k*, i.e., agents adapt their bid towards the last k*
for one bid unit. In particular, thosewith bid k k*< choose k 1+ , the agents with k k*> bid k 1- , and the
winner simply keeps his/her bid. In the latter case, agents bid randomly by simply keeping the bid k in the last
round, ormoving one bit unit away from it (i.e., choosing k 1- , k, or k 1+ with equal probability). The zero-
flux boundary condition is adopted in the bid space V c1,[ ]- at the left hand side, subject to the requirement of
positive bids. At the right hand side, the boundary condition is that the payoff of thewinning agentmust be
positive. In simulations, the auction process is conducted iteratively to yield a stable bid distribution.

The bid distributions obtained from simulations of ourmulti-agentmodel are also plotted infigure 1 (red
open circles), where the number of agentsN is the same as the number of participants recorded in the LUBA
data, and the attracting probability p is chosen to best fit the real bid distribution. Table 2 lists the values of the
parameter p obtained from theminimumKolmogorov–Smirnov (KS) test forfitting the real data sets. The
correspondingKS coefficients denoted byKS, and the coefficient of determination denoted byR2, are also listed
for reference. The remarkable agreement between themodel generated and real bid distributions indicates that
the processes articulated in ourmodel capture themain dynamics of LUBA systems. In addition, we observe that
small values of p lead to the bestfit. From the perspective ofmulti-agent interactions, this implies that the
observed inverted J-shaped bid distributions are result of smallmovements of participants to adapt their bid
towards the previous winning bid k*.

The three parameters in ourmulti-agentmodel are the value of itemV, the number of agentN, and the
attracting probability p. The respective effects of these parameters on the auction dynamics are illustrated in
figure 3. The parameterV represents the upper bound for rational bids in the real cases and in ourmodel, which
is rarely observed due to the auction rule that the ‘lowest unique bidwins.’As shown in figure 3(a), the valueV
has little influence on the bid distribution. In contrast, the parametersN and p both play a significant role in the
emergence of the bid distribution. AsN is increased, the location of the peak of the distribution, i.e., themost
probable bid price,moves rightward and the height of the peak is reduced, as shown infigure 3(b)where, the
variance of the bid is enhanced accordingly.We see that larger values of p give rise to amore concentrated bid
price distributionwith higher peak and narrowerwidth. Distinct from the effects ofN, themost probable bid
price changes in a relatively small region of p.

3.Mean-field analysis and evidence of exponential decay in bid distribution

3.1. Self-consistency equation in themean-field framework
The stable bid distribution fk can be regarded as the probability for each agent to bid at k. Suppose that the
numberN of participants and the bid probability distribution fk are known.We can calculate the probabilitywk

for one given bid k towin the auction, i.e., the lowest unique bid k k* = . The quantitywk denotes the
distribution function of thewinning price. In contrast, since thewinner’s bid k* attracts all other participants,
thewinning probability distributionwk provides effectively amean fieldwith respect towhich all the agents
adapt their bids. That is,wk determines, probabilistically, the new bid distribution fk. The new fkwill again result
in an updatedwk. These observations suggest that the approach of self-consistency in themean-field framework
can be used to analyze the dynamical process of online auction.

Our detailed analysis of the iterative, self-consistent process between fk andwk is as follows. Firstly, for a
given bid distribution fk, we calculate thewinning probability distributionwk. The simplest case is k 1* = , i.e.,
there is only one single bid at k= 1. The probability for this case is

Figure 3. Stable bid distributions for different parameters. The stable bid distributions are obtained from simulation for the systems
with different (a) item valueV, (b)number of agentsN, and (c) values of the attracting probability p.
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where f1 is the probability for each player to bid at k= 1, and n N1 = is the number of potential agents whomay
bid at 1.

The case of k 2* = is critical for the analysis, which is slightlymore complicated. In particular, the agents
bidding at 1 unit will be excluded from the number of potential players whomay bid at 2 units (denoted by n2).
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agents except thosewho bid 1. For larger k* values, those agents who bid lower prices are excluded gradually.We
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where the number of potential agents to bid at k is n N f1k j

k
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1( )å- =
- and the renormalized bid probability

is f f f
k k j k

k
j

¯
å¢ = =

. For a given bid distribution fk, thewinning probability distributionwk can be uniquely

determined from equation (4).
We next consider the process to determine the bid distribution fk in thefield created by a givenwinning

probability distributionwk. In ourmulti-agentmodel, agentsmove their bids one unit towards thewinning bid
k*. Givenwk, without specific knowledge of k*, thewinner’s influence can be regarded as probabilistic, since
each agentmakes decision in themean field determined bywk. Specifically, each agent decreases (or increases) its
bid by one unit with probabilityW k< (orW k> ), or keep his/her original bidwith probabilityW k= . The quantities

W wk j

k
j1

1å=< =
-

,W wk k== , andW wk j k

k
j1

¯
å=> = +

are the probabilities that thewinner is located on the left

side of k, is exactly at k, and is on the right side of k, respectively. That is, these probabilities are for the cases where
thewinning price k* is less than, equal to, or larger than k, respectively.We haveW W W 1k k k+ + =< = > . In
ourmodel, the two probable actions of each agent are attraction towards thewinner’s bidwith probability p, and
randomadoption of its bidwith probability p1 - , which correspond to drift and diffusion in aMarkov
stochastic process, respectively. The corresponding transitionmatrix can bewritten as
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where both Mdrift and Mdiffusion are tridiagonalmatrices, and the elements of Mdrift are determined by the
winning probability distributionwk. According to the ergodic theoremofMarkov chain [38], every irreducible
Markov chain offinite states is ergodic and admits a unique stationary distribution. The stable state fk can then be
obtained from the iterative operation of M until the following condition ismet:

f fM . 6k k ( )=

We see that equations (4)–(6) represent a self-consistency equation set, which can be solved iteratively. Figure 1
shows the stable distribution fk obtained from the self-consistency equations (the blue dashed curves labeled as
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‘mean-field theory’), with the same parametersN and p as in the simulations.We observe a good agreement
between the stable fk from the self-consistency equations and those fromdirectmodel simulations (red open
circles) and from the real data (black bars). Take, for example, the data sets (a) and (f) infigure 1. Figure 4 shows
the stablewk and fk distributions obtained from the self-consistency equations, and the inserts show the
corresponding probabilitiesW k< ,W k= andW k> versus k. Through extensive simulations, wefind that the
winning probability distributionwk has twomain features:monotonic decreasing trend and bimodal
distribution, as shown infigure 4.

3.2. Exponential decay of bid distribution
Comparing the predicted bid distribution fk to the real data, we see that ourmodel successfully reproduces the
whole curve of fk, insofar as the value of p is chosen properly (as listed in table 2). Especially, both the non-
monotonous feature in the small k region and the exponential decay in the large k region are predicted.Here we
demonstrate that, in ourmodel, the exponential decay of the bid distribution fk can be calculated analytically
based on the concept of detailed balance.

For a large arbitrary bid price k, majority bids of thewinner’s bid price k* appear on its left-hand side. For the
action towards k* for certain value of the attracting probability p, the agents bidding about k tend to reduce their
bids. If the action is randomwith probability p1 - , an agent chooses a nearby bid, leading to a chance to increase
their bids. A stable bid distribution fk implies a detailed balance, i.e., the probability offlowing out of k is
equilibrated by that into k. The corresponding equation can bewritten as

pf
p f p f f

pf
2 1

3

1

3
. 7k

k k k

k

1 1

1

( )( ) ( )
( )+

-
=

- +
+
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+
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The solution of equation (8) subject to the constrain flim 0k k =¥ is the exponential function

f
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k a p kexp ln

1 2

1
exp .k [ ( ) ]

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥~ -

+
-

º - ¢

Table 2 shows the corresponding analytical result of the exponent a p ln
p

p

1 2

1
( ) ( )¢ = +

-
for each data set, with the

parameter p satisfying the the bestfitting of fk frommulti-agent simulation (red circles infigure 1)with thewhole
curve of fk from real data (black bars infigure 1). A remarkable result is that the exponent a′with the bestfitted p
is approximately equal to the exponent â obtained directly from the exponential fitting (black solid curves in
figure 1) to the tails of fk from real data. Thismeans that, ourmulti-agentmodel is self-consistent in predicting
the local decaying feature of fk in the large k region and in predicting thewhole curve of fk, both being associated
with the same value of parameter p.

Figure 4. Stable bid price distributions obtained from self-consistency equation. Thewinning probability distributionwk (red solid
curves) and the bid distribution fk (blue bars) corresponding to the two typical data sets ((a) and (f)). The two inserts show the
accumulated distribution W k< (black solid triangles) or W k> (blue open triangles), which correspond to the probability that the
winner is located on the left-hand side or the right-hand side of k. The probability for thewinner to be located at k (denoted by W k= in
the inserts) iswk.
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4. Analysis of another data set

The data sets analyzed so far are relatively brief, fromwhich the players cannot be identified in different rounds
of the game. In order to get the empirical evidence for the attractiveness of thewinner’s bid, we analyze another
data set of LUBA,which recorded information about the individual agents. The data set was obtained
from http://homes.soic.indiana.edu/filiradi/Data/lub/_data.tgz, uploaded byRadicchi etc, which they
analyzed in their paper entitled ‘rationality, irrationality and escalating behavior in LUBA’ [11]. In this paper, it
wasmentioned that the bid of each player changes, but the issue of whether the changes are toward thewinner’s
bidwas not discussed. Our analysis of this data set yielded the following results. (For convenience, we label the
data set as UBH, since its original website is www.uniquebidhomes.com.)

The original data recorded gameswith different numbers of participants and items of various values.We
obtained data consisting of 17 rounds of game, where the item value is 50 000 cents. The number of players varies
from125 to 420 (withmean value 259). The total number of bids is 5018. Themaximumandminimumbids are
1423 cents and 1 cent, respectively.

As shown infigure 5, the bid distribution of this empirical data set exhibits similar features to those from the
data set in our previous version, e.g., the inverted J-shaped and exponential decaying tail. Furthermore, the
results fromourmulti-agentmodel and from themean-field analysis agree well with these fromUBHdata set.

The parameters such as the attracting probability p, the exponent a′ as a function of p, and the exponent â
obtained from thefitting are listed in table 3. It can be seen that the values of a′ and â are quite close to each other,
demonstrating the suitability of ourmodel for the new empirical data.

We identified players in different game rounds and obtained the changes in the agents’ bid prices with
respect to the last winning bid. There are 167 records altogether. Table 4 lists the records of some typical
participants.

Through statistical analysis, we find that in 88 (or 52.69%) records the bid pricemoves towards the last
winning price (approaching), while in 75 (or 44.91%) records, itmoves in the opposite direction (departing).
There are 4 (or 2.40%) records that the bid price did not change (staying). The probability ofmoving towards
winner is larger than that associatedwith departing, which is also indicated by the positive attracting probability
p of thewinning bid obtained fromourmodel.

For the case of p= 0.0062 listed in table 3, we simulate the biased randomwalk process, inwhich eachwalker
moves to the right-hand sidewith the probability p p1 3( )+ - = 0.33747 (i.e., the probability tomove to the

Figure 5.Distributions of bid prices from an additional real data set, simulation and our theory. Distributions from theUBHdata set
(black bars) and exponential fits to the tails of the distributions (black solid curves). The estimated exponential fitting index is
a 0.0174ˆ = . Also shown for comparison are the distributions from simulation of ourmulti-agentmodel (red open circles) and the
corresponding predictions from themean-field self-consistent equations (blue dashed curves). The subplot is in liner-logarithmic
coordinate, which indicates that the distributions have an exponential tail.

Table 3. Fitting parameters in the bid distributions from the data set UBH.

Data set p KS R2
â a p ln

p

p

1 2

1
( ) ( )¢ = +

-

UBH 0.0062 0.0158 0.9490 0.0174 0.0185
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last winning bid in ourmodel), to the left-hand sidewith probability 0.33127 (i.e., p1 3( )- ), or to stay at the
current positionwith probability 0.33127. Initially, 200 000walkers are located at 0. The process continues until
the fraction of walkers at 0 decreases to 2.4%, which is the actual value from theUBHdata.We then obtain the
fractions of walkers positioned on the right-hand side of 0, at 0, and on the left-hand side of 0with probabilities
54.98%, 2.39% and 42.63%, respectively, which are approximately the same as the corresponding probabilities
obtained from real data.

In real social systems, learning from thewinners is one of themost straightforward strategy for individuals,
which is also a common and ubiquitous behavior observed in population dynamics of competitive species. It is
thus natural that players in the LUBA game try to learn from thewinners, i.e., attracted towards thewinning
bids. The analysis and simulation results from theUBH example provide further evidence that this learning
mechanism captures themain feature of the LUBA systems.

5. Conclusions

Online auctions represent an important type of socio-economical activities in themodernworld. This is a typical
example of complex dynamical systems, inwhich a large number of individuals interactingwith each other by
taking the action of bid in order to gain themaximumpayoff. A basic quantity underlying the auction process is
the distribution of bid price, which exhibits a general, inverted J-shaped type of functional form from various
empirical data sets. There have been recent efforts,mainly based on the concept ofNE, to understand the
dynamicalmechanisms leading to the distribution and to predict itsmathematical form [12, 14–17].

Themotivation of ourwork came from the observation that complex dynamical process of online auction
bears certain similarity tominority game dynamics, a class of relatively well studied,multi-agent evolutionary
game dynamics [21–29, 31–33] that have proven capable of providing great insights into a variety of social and
economical processes. Our idea is then to construct amulti-agent gamemodel with the aim to better predict the
empirically observed bid price distributions. Using six real data sets of LUBA auction process to determine a
minimal number offitting parameters, we demonstrate that ameanfield analysis of ourmodel can generate
distributions that agreewell with those from the real data. Remarkably, our analysis identifies the attracting
probability as a key parameter underlying the dynamics of complex auction systems.With respect to
comparisonwith the real data, our analytically predicted bid price distributions aremore accurate than
previously achieved. Ourwork represents an interdisciplinary approach, usingmethods from complex
dynamical systems and statistical physics, to understanding the dynamical processes underlyingmodern social
and economical systems.

In addition, the behaviors of the players in a real auction game can be affected by various types of factors such
as historical information, personal characteristics, and psychological activities. It is quite challenging to design a
model capable of exactlymatching the empirical data in all details. Themain objective of our study is to develop
amodel that can accurately predict the inverted J-shape bid distribution observed from empirical data so as to
elucidate the dynamicalmechanism for the bid distribution.More specifically, ourmodel focuses on the
tendency in bidding towards thewinning bid, whichwas proven to give rise to the essentialmechanism for the
J-shape bid distribution. The effect of diversified bid amounts that each player adjusts at each step remains to be
an interesting topic to be explored.
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373 57 129 53.67 Departing

376 24.17 129 29.62 Aapproaching
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