
NECO-07-12-1722 neco.cls April 29, 2013 15:1

U
nc

or
re

ct
ed

Pr
oo

f

LETTER Communicated by Rafal Bogacz

Dynamics of Multiple-Choice Decision Making

Hongzhi You
howardwise@gmail.com
Department of Systems Science and National Key Laboratory of Cognitive
Neuroscience and Learning, Beijing Normal University, Beijing 100875,
China, and Institute of Neuroinformatics, University of Zurich
and ETH Zurich, Zurich 8057, Switzerland

Da-Hui Wang
wangdh.bnu.edu.cn
Department of Systems Science and National Key Laboratory of Cognitive
Neuroscience and Learning, Beijing Normal University, Beijing 100875, China

Neuroscientists have carried out comprehensive experiments to reveal
the neural mechanisms underlying the perceptual decision making that
pervades daily life. These experiments have illuminated salient features
of decision making, including probabilistic choice behavior, the ramping
activity of decision-related neurons, and the dependence of decision time
and accuracy on the difficulty of the task. Spiking network models have
reproduced these features, and a two-dimensional mean field model has
demonstrated that the saddle node structure underlies two-alternative
decision making. Here, we reduced a spiking network model to an an-
alytically tractable, partial integro-differential system and characterized
not only multiple-choice decision behaviors but also the time course of
neural activities underlying decisions, providing a mechanistic explana-
tion for the observations noted in the experiments. First, we observed
that a two-bump unstable steady state of the system is responsible for
two-choice decision making, similar to the saddle node structure in the
two-dimensional mean field model. However, for four-choice decision
making, three types of unstable steady states collectively predominate
the time course of the evolution from the initial state to the stable states.
Second, the time constant of the unstable steady state can explain the fact
that four-choice decision making requires a longer time than two-choice
decision making. However, the quicker decision, given a stronger motion
strength, cannot be explained by the time constant of the unstable steady
state. Rather, the decision can be attributed to the projection coefficient
of the difference between the initial state and the unstable steady state
on the eigenvector corresponding to the largest positive eigenvalue.
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2 H. You and D.-H. Wang

1 Introduction

Decision making is the important cognitive process of selecting an option or
action among a set of alternatives. Physiological experiments have revealed
that decision making involves many brain areas, such as the prefrontal
cortex and the parietal cortex (Wang, 2008; Kable & Glimcher, 2009). In
discrimination tasks of coherent motion in random dots, neurophysiologists
found that the neural activities in monkeys’ lateral intraparietal cortexes
(LIP) are correlated with neural computation for decision making (Roitman
& Shadlen, 2002; Shadlen & Gold, 2004; Churchland, Kiani, & Shadlen,
2008). These LIP neurons selective for a particular saccade display ramp-
up activities before the final decision is made. Recently it was also found
that the behavioral and neural data in discrimination tasks of coherent
motion in random dots are correlated with both motion strength and the
number of alternatives. The experimental results showed that these LIP
neurons would take longer to accumulate more evidence for more difficult
tasks (lower motion strength and more alternatives) and the accuracy of the
decision is negatively correlated with the difficulty of the task (Churchland
et al., 2008; Bollimunta, Totten, & Ditterich, 2012).

To understand the dynamics of multiple-choice decision making, a num-
ber of models have been proposed. For example, a leaky competing accu-
mulator (LCA) model, which considered the leakage of integration and
the competitive inhibition between accumulators for different choices, de-
scribed the process of evidence accumulation and competition observed in
the brain and accounted for reaction time distributions in psychophysical
experiments (Bogacz, Usher, Zhang, & McClelland, 2007). A model with
multiple mutually inhibited leaky integrators that approximated a drift-
diffusion process was proposed to explain the behavioral data of multiple-
alternative-choice tasks (McMillen & Holmes, 2006). A three-dimensional
diffusion model (Niwa & Ditterich, 2008), whose integrators accumulated
net sensory evidence for choices, has fitted and predicted the behavioral
data.

Although these behavioral data can be fitted by these models, the
mechanisms differ in their internal dynamics and therefore make differ-
ent predictions for neurophysiological data (Ditterich, 2010). Based on the
neurophysiological data mentioned above, biophysically plausible spiking
network models have been proposed to account for multiple-choice deci-
sion tasks. These models, particularly the continuous model by Furman
and Wang (2008) and the discrete four-alternative model by Albantakis and
Deco (2009), are equipped with strong recurrent excitation and global inhi-
bition and exhibit multiple steady states and a slow dynamic process. Both
spiking network models demonstrate typical characteristics in decision-
making tasks (Churchland et al., 2008), such as the probabilistic choice in
behavior (Wang, 2002; Furman & Wang, 2008), the fact that the earlier stage
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Dynamics of Multiple-Choice Decision Making 3

plays a more important role in the final choice than later stages (Wong,
Huk, Shadlen, & Wang, 2007), the fact that more alternatives slow decision
making and decrease the rate of correct choice (Furman & Wang, 2008), and
the similarity effects on the choice (Furman & Wang, 2008; Albantakis &
Deco, 2009). However, the dynamical mechanisms underlying these char-
acteristics are difficult to uncover using the spiking network models. For
two-alternative decision making, theoretical analysis of a firing-rate model
reduced from the spiking network model demonstrated that the saddle
point underlies decision making and the local dynamics of the saddle point
account for the dependence of the reaction time on the coherence level
(Wong & Wang, 2006; Wong et al., 2007). For multiple-choice decision mak-
ing, we can speculate that a similar mathematical structure underlies the
decision process and the characteristics of experimental behaviors. In this
letter, we applied a mean field approach to construct a partial integro-
differential system, which provided a neurodynamical framework to in-
vestigate the underlying dynamics of multiple-choice decision making. We
used the simplified model to (1) account for the salient observations of the
monkey experiments and the spiking network model, (2) reveal different
dynamical mechanisms underlying two- and four-choice decision making
using the simplified models, and (3) understand the influences of motion
strength and choice number on the reaction time.

2 The Model

2.1 The Architecture of the Spiking Network for Multiple-Choice De-
cision Making. The multiple-alternative decision making in the visual
random-dot motion direction discrimination task (see Figure 1A) (Church-
land et al., 2008) was simulated using a spiking network (see the top panel
of Figure 1B), which reproduced the salient observations in the monkey ex-
periments (Furman & Wang, 2008). This network was originally designed
to describe spatial working memory (Compte, Brunel, Goldman-Rakic, &
Wang, 2000), and the connectivities between neurons are structured and
consistent with a columnar organization in the cerebral cortex (Constantini-
dis & Steinmetz, 1996; Constantinidis, Franowicz, & Goldman-Rakic, 2001).
The pyramidal cells in the network are tuned by their preferred directions
and uniformly arranged in a circle. The connections between pyramidal
cells are structured as a gaussian function of the difference between their
preferred directions: ω(θ ′ − θ ) = J− + (J+ − J−) exp(−(θ ′−θ )2

2σ 2
w

), where θ ′ and
θ are the preferred directions of two pyramidal cells, J− and J+ describe the
strength of the cross- and iso-directional connections, and the connectivity
is normalized as

∫ 360
0 ω(θ )dθ = 360 (Compte et al., 2000) with J+ = 1.73 and

σw = 12.76◦. The interneurons are nonselective for direction. The connec-
tions to and from the interneurons are uniform: ωE↔I = 1 and ωI↔I = 1.
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4 H. You and D.-H. Wang

2.2 The Partial Integro-Differential Equation for Multiple-Choice De-
cision Making

2.2.1 Wilson-Cowan Type Model. Because pyramidal cells are tuned by
their preferred directions and interneurons are nonselective for direction
(see Figure 1B), the activities of the network can be rewritten as a partial
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Dynamics of Multiple-Choice Decision Making 5

integro-differential equation following the Wilson-Cowan model (Wilson
& Cowan, 1972, 1973):

τr
drE (θ, t)

dt
= −rE (θ, t) + φ[Isyn,E

(θ, t)], (2.1)

τr
drI(t)

dt
= −rI(t) + φ[Isyn,I

(t)], (2.2)

where rE (θ, t) is the instantaneous firing rate of pyramidal cells preferring
the direction θ , rI(t) is the instantaneous firing rate of interneurons, τr is the
time constant of the population firing rate, and Isyn is the total postsynap-
tic current. The activation function is φ(Isyn) = cE,I Isyn−IE,I

1−exp[−gE,I (cE,I Isyn−IE,I )]
(Abbott

& Chance, 2005) with the gain factor of cE,I and the curvature factor of
gE,I. When gE,I is large, the activation function becomes a linear threshold
function with IE,I/c as the threshold current (Wong & Wang, 2006).

2.2.2 Synaptic Currents. Synaptic currents are mediated by the α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR), the
n-methyl-D-aspartate receptors (NMDAR), and the gamma-aminobutyric

Figure 1: The task and architecture of the network. (A) The multiple-choice
decision task used in the experiments. In the task, the monkey is required to
fixate on the center of the monitor, and then two or four peripheral targets are
presented. After a delay, a patch of dynamic random dots appears, and a fraction
of the dots move coherently toward one of the targets, while the remaining
dots move randomly. The monkey is required to report the direction of the
coherent motion by a saccade to the corresponding targets. (B) Top: Schematic
diagram of the spiking network model for multiple-choice decision making. The
network consists of excitatory pyramidal cells and inhibitory interneurons. The
pyramidal cells are tuned by their preferred directions, which uniformly cover
all directions along a circle. The connectivity strength between the pyramidal
cells is a gaussian function of the difference between their preferred directions.
The interneurons are nonselective, and the connectivity strength to and from the
interneurons is uniform (Furman & Wang, 2008). Bottom: Schematic description
of the reduced model for decision making. After the reduction, the final reduced
model consists of continuous excitatory pools whose preferred directions cover
all directions. Because of the gaussian connections between the excitatory pools
and strong uniform inhibition, the reduced model has a short-range excitation
and long-range inhibition. (C–E) Simulation protocol. (C) Time course of the
inputs to the network. (D) Spatial profile of the target inputs to the network.
The directions of the targets are 90◦ and 270◦ for two choices and 45◦, 135◦, 225◦,
and 315◦ for four choices, respectively. (E) Spatial profile of the motion stimuli
with different coherence levels.
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acid receptors (GABAR), and their gating variables obey the following dy-
namics (Wong & Wang, 2006):

dSAMPA(θ, t)
dt

= −SAMPA(θ, t)
τAMPA

+ rE (θ, t), (2.3)

dSNMDA(θ, t)
dt

= −SNMDA(θ, t)
τNMDA

+ γ [1 − SNMDA(θ, t)]rE (θ, t), (2.4)

dSGABA(t)
dt

= −SGABA(t)
τGABA

+ rI(t). (2.5)

AMPARs and NMDARs mediate excitatory postsynaptic currents (EPSC),
and GABARs mediate inhibitory postsynaptic currents (IPSC). The neurons
also receive external stimuli and background noisy inputs mediated by
AMPARs. Therefore, the total synaptic current to pyramidal cells preferring
direction θ is

IE,syn(θ, t) = I
E→E

AMPA(θ, t) + I
E→E

NMDA(θ, t) + I
I→E

GABA(θ, t)

+ I
Ext→E

AMPA(θ, t) + I
Back→E

AMPA(θ, t), (2.6)

where the first three terms are recurrent synaptic currents, I
Ext→E

AMPA(θ, t) is the
task-related stimulus mediated by AMPARs, and I

Back→E

AMPA(θ, t) is the back-
ground noise current input. These currents are described as

I
E→E

AMPA(θ, t) = JA,EE

∫ 360

0
ω(θ ′ − θ )SAMPA(θ ′, t)dθ ′, (2.7)

I
E→E

NMDA(θ, t) = JN,EE

∫ 360

0
ω(θ ′ − θ )SNMDA(θ ′, t)dθ ′, (2.8)

I
I→E

GABA(θ, t) = JG,EIωE↔ISGABA(t), (2.9)

where JA,EE , JN,EE , and JG,EI are the contribution coefficients of the gating
variable of AMPARs, NMDARs, and GABARs, respectively, to synaptic
currents of the pyramidal cells. Synaptic currents to interneurons are similar
to those injecting to pyramidal cells:

II,syn(t) = I
E→I

AMPA(t) + I
E→I

NMDA(t) + I
I→I

GABA(t) + I
Ext→I

AMPA(t) + I
Back→I

AMPA(t),

(2.10)
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Dynamics of Multiple-Choice Decision Making 7

where the first three terms are recurrent currents and described as

I
E→I

AMPA(t)= JA,IE

∫ 360

0
ωE↔ISAMPA(θ ′, t)dθ ′, (2.11)

I
E→I

NMDA(t)= JN,IE

∫ 360

0
ωE↔ISNMDA(θ ′, t)dθ ′, (2.12)

I
I→I

GABA(t)= JG,IIωI↔ISGABA(t), (2.13)

where JA,IE , JN,IE , and JG,II are the contribution coefficients of the gating
variable of AMPARs, NMDARs, and GABARs, respectively, to the synaptic
currents of interneurons.

2.2.3 Slow Dynamics of the System. The time constant of the NMDAR’s
gating variable is much longer than those of AMPARs, GABAR’s gat-
ing variables, and the firing rates. Therefore, the firing rates, AMPARs,
and GABAR’s gating variables can be set at their steady states, while the
NMDAR’s gating variables dominate the dynamic behavior of the system:

SAMPA(θ, t)= τAMPArE (θ, t) = τAMPAφ[IE,syn(θ, t)] (2.14)

SGABA(t)= τGABArI(t) = τGABAφ[II,syn(t)] (2.15)

dSNMDA(θ, t)
dt

=−SNMDA(θ, t)
τNMDA

+ γ [1 − SNMDA(θ, t)]rE (θ, t) (2.16)

2.2.4 Ignoring AMPARs. AMPARs mediate fast synaptic currents. An
increase in the ratio of AMPAR- to NMDAR-mediated currents decreases
reaction time and deteriorates performance. If this ratio is too large, the
model cannot account for the experimental results, no matter how finely
tuned the parameters are (Wong & Wang, 2006). The slower NMDAR dy-
namics play a key role in the time integration of decision making. Therefore,
the AMPARs can be ignored to simplify the problem and investigate the
essential mechanism underlying multiple-choice decision making.

2.2.5 Linearization of the Interneuron’s Activation Function. The activation
function φ(Isyn) = cIIsyn−II

1−exp[−gI (cIIsyn−II )]
is a nonlinear function. However, proper

parameters and the input to the interneuron allow us to use a linear function
to estimate the activation function of the interneuron (Wong & Wang, 2006):

rI(t) = φ[II,syn(t)] � aII,syn(t) + b. (2.17)
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By putting formula 2.17 into 2.10 and ignoring the AMPARs, we obtain the
recurrent inputs to the interneuron as

II,syn =
∫ 360

0
JN,IESNMDA(θ ) dθ ′ − JG,IIτGABArI(II,syn) + IExt→I

AMPA + IBack→I
AMPA

=
∫ 360

0
JN,IESNMDA(θ ′) dθ ′ − JG,IIτGABA(aII,syn + b) + IExt→I

AMPA + IBack→I
AMPA .

From this equation, we can work out synaptic inputs to the inhibitory pool:

II,syn(t) = IExt→I
AMPA + IBack→I

AMPA − bJG,IIτGABA + ∫ 360
0 JN,IESNMDA(θ ′, t) dθ ′

1 + aJG,IIτGABA
.

(2.18)

Therefore, we obtain inhibitory synaptic currents to the pyramidal cell:

I
I→E

GABA(t)= JG,EIωE↔ISGABA(t) = JG,EIωE↔IτGABAφ[II,syn(t)]

= JG,EIωE↔IτGABA[aII,syn(t) + b]

= JEIE

∫ 360

0
SNMDA(θ ′, t) dθ ′ + IR(t),

where JEIE = JN,IE JG,EIωE↔IτGABA
1+aJG,IIτGABA

describes the competition of the pyramidal cells
through the interneurons and IR(t) is determined by the scaled external
stimuli and background noise.

2.2.6 The Partial Integro-Differential Equation for Multiple-Choice Decision
Making. Combining the above simplifications, we obtain a partial integro-
differential equation for the slow gating variable of NMDARs to explore
the dynamics of multiple-choice decision making (see the bottom panel of
Figure 1B). For simplicity, we have omitted the subscripts of NMDAR in
the rest of this letter:

∂S(θ, t)
∂t

=−S(θ, t)
τs

+ γ [1 − S(θ, t)]r(θ, t), (2.19)

r(θ, t) = cEI(θ, t) − IE

1 − exp[−gE (cEI(θ, t) − IE )]
, (2.20)

I(θ, t) =
∫ 360

0
W(θ ′ − θ )S(θ ′, t) dθ ′ + Iext (θ, t) + Iback + Inoise(θ, t),

(2.21)
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Dynamics of Multiple-Choice Decision Making 9

where W(θ ′ − θ ) = JEEω(θ ′ − θ ) − JEIE , Iext (θ, t) represents the equivalent
task-related AMPAR-mediated synaptic current input to the θ -preferred
excitatory pool. IBack is the mean effective constant background input. JEE is
the effective NMDAR-mediated synaptic conductance. Inoise(θ, t) represents
the equivalent noisy input. Here we choose these parameters as follows: τs =
100 ms, γ = 0.641, cE = 320(VnC)−1, IE = 125 Hz, gE = 0.16 s, JEE = 0.0194,
JEIE = 0.0203, and Iback = 0.2702 nA. Because the mean field approach does
not take into account the time-varying noise that plays a crucial role in the
spiking neuron model, we add a noise term implemented as white noise
filtered by a short time constant (AMPA synaptic). This can be described as
an Ornstein-Uhlenbeck process (Wong & Wang, 2006),

τAMPA
dInoise(θ, t)

dt
= −Inoise(θ, t) + ξ (θ, t)

√
τAMPAσ 2

noise, (2.22)

where σ 2
noise is the variance of the noise (σnoise = 0.027 nA), τAMPA = 2 ms, and

ξ (θ, t) is a gaussian white noise with zero mean and unit variance. In the
simulations, we use a stable integration process for this gaussian stochas-
tic model, which guarantees that the statistical properties of the variables
are independent of the integration step (Destexhe, Rudolph, Fellous, &
Sejnowski, 2001; Gillespie, 1996),

Inoise(θ, t + h) = Inoise(θ, t)e
− h

τAMPA + AN(0, 1), (2.23)

where A =
√

2
2 σnoise

√
1 − e

− 2h
τAMPA , and N(0, 1) is a gaussian white noise with

zero mean and unit variance. In the numerical simulation, we choose the
integration step h = 0.1 ms.

2.3 The Task-Related External Stimuli. In the reduction model, the ex-
ternal input was constructed to model the multiple-choice task (Churchland
et al., 2008). The external input to pyramidal cells consists of the following
four parts: the visual stimulus about multiple alternatives, the random-dot
motion stimulus, a top-down control signal, and the inhibitory input. The
coherent motion is encoded by the neurons in the middle temporal area
(MT), while the targets are encoded in a separate sensory area. These two
types of signals relay to components of the decision circuit such as LIP.
Meanwhile, the top-down control signal comes from higher brain areas
such as the prefrontal cortex and can modulate the activities of LIP neurons
during the task. The external inputs to the interneurons are transferred to
inhibitory inputs to pyramidal cells through the linearization of the acti-
vation function of interneurons. In summary, we adopted the procedure of
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Furman and Wang (2008) to model the external input to the pyramidal cells
preferring θ as

Iext (θ, t) = Jext{ITar
AMPA(θ, t) + IMot

AMPA(θ, t)} + IControl
AMPA (θ, t) − IInh

AMPA(θ, t),

where the external input strength Jext is equal to 1 unless otherwise noted.
The target input, ITar

AMPA(θ, t), which reaches the LIP at 500 ms with a la-
tency of 200 ms, depends on the number and location of the targets in the
experiment (see Figure 1D) and varies with time,

ITar
AMPA(θ, t) = h(t)

ntar∑
k=1

exp

(
− (θ − θ k

tar)
2

σ 2
tar

)
, (2.24)

where ntar is the number of targets, θ k
tar is the direction of the kth target,

σtar = 10◦, and h(t) is a time-dependent multiplier (see Figure 1C),

h(t) =

⎧⎪⎨
⎪⎩

0

a1 + a2 exp(−(t − t0)/τ1)

a3 + (a1 − a3) exp(−(t − t1 − 80)/τ2)

0 < t < t0

t0 ≤ t < t1 + 80

t1 + 80 ≤ t

(2.25)

where t0 = 500 ms is the onset of targets and t1 = 1300 ms is the onset
of the motion stimuli. The time course of h(t) is in accordance with the
observations of the monkey experiment. The exponential decay of the target
input’s transient phase can be explained by the adaptation after the tonic
stimulus. The suppression of the target input starting with a latency of
80 ms after the motion stimulus onset is assumed to be the result of either
an attentional shift from the targets to the coherent motion of random dots
or of cross-inhibition between upstream neurons encoding the targets and
the motion stimulus (Furman & Wang, 2008); τ2 describes the speed of
decay. We chose τ1 = 50 ms, τ2 = 15 ms, a1 = 0.28 nA, a2 = 0.15 nA, and
a3 = 0.06 nA.

The motion stimulus from the MT to the LIP depends on the direction
and coherence level of the motion. The profile of the motion stimuli can
be approximated by a gaussian function, and its width is independent of
the coherence level (see Figure 1E). However, the motion stimulus at zero
coherence is a unified input to all selective pools. The motion signals reach
LIP area at 1500 ms, with a latency of 200 ms (see Figure 1C). The motion
stimulus is given by

IMot
AMPA(θ ) = b0 + c′

(
−b1 + b2 exp

(
− (θ − θmot )

2

σ 2
mot

))
, (2.26)
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where c′(0 ≤ c′ ≤ 1) denotes the coherence level and θmot is the random-dot
motion direction. Here we used b0 = 0.002 nA, b1 = 0.002 nA, b2 = 0.01 nA,
and σmot = 40◦.

In our model, the top-down control signal is nonselective. We assumed
the magnitude of the control signal to vary with the number of the choices
and the phase during the target or motion stimulus. The control signal is
given by

Icontrol =

⎧⎪⎨
⎪⎩

0

c1

c2

0 < t < t0

t0 ≤ t < t1 + 200

t1 + 200 ≤ t

, (2.27)

where c1 is 0.01 nA for two choices and 0.035 nA for four choices and c2
is 0.0198 nA for two choices and 0.039 nA for four choices. The inhibitory
input is also a nonselective signal during the target’s presentation, does not
vary with the number of choices, and contributes to stabilize the response
of the system during the targets’ presentation:

Iinhibitory =

⎧⎪⎨
⎪⎩

0

d1 + d2 exp(−(t − t0)/τ1)

d1 exp(−(t − t1 − 80)/τ2)

0 < t < t0

t0 ≤ t < t1 + 80

t1 + 80 ≤ t

, (2.28)

where d1 = 0.12 nA, d2 = 0.03 nA, and other parameters are identical to
those in the target input.

2.4 Decision Readout. We assumed that the threshold for decision de-
pends on neither the motion coherence level nor the number of choices
according to the experimental observations. A decision is reached when
any of the firing rates crosses a threshold of 60 Hz. The selected target is
determined as that closest to the population vector (Furman & Wang, 2008):

θp(t) = arctan

( ∫ 360
0 r(θ, t) sin(θ ) dθ∫ 360
0 r(θ, t) cos(θ ) dθ

)
. (2.29)

Meanwhile, the reaction time (RT) is calculated by,

RT = tD − tstart + tpost, (2.30)

where tD is the time when the decision is made, tstart = 1300 ms is the onset
of the motion stimulus, and tpost = 80 ms is the postreaction time due to the
execution of the saccade.
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3 The Numerical Integration of Partial Integro-Differential System

The partial integro-differential system, equations 2.19 to 2.21, describes the
dynamics of multiple-choice decision making. In this section, we demon-
strate that the typical behaviors of multiple-choice decision making can be
captured by the reduced system using numerical integration.

3.1 Time Course of the Multiple-Choice Decision Making. In our
model, the continuous selective pools are thought to represent the pop-
ulations of pyramidal cells in LIP. Several sample simulation trials for
two- and four-choice decision making with 0% coherence, called unbiased
decision making, are shown in Figure 2. Before the onset of the target
input, all selective pools in this local microcircuit display spontaneous ac-
tivity. Once the target stimuli are presented, the system develops a series
of strong, localized activity bumps centered in the direction of the targets,
a behavior similar to those in the spiking network (Furman & Wang, 2008).
These activity bumps are identical in height and shape. Because both the
target stimuli and the nonselective inhibitory input are very strong during
the target presentation, these activity bumps are stable, and the network
does not exhibit the winner-take-all mechanism. When the motion stimulus
is presented, the populations located around the targets undergo a dip in
activity due to a decrease in the target caused by either divided attention
or the upstream inhibition of the target signal. As the activities develop in
response to the motion stimulus, the stochastic recurrent inputs gradually
break the symmetry between the activity bumps, even though the mean
total external inputs to the network are symmetric over time. The activity
of the pyramidal pool located around the selected target ramps up and wins
the competition, while the activities of the other neuron pools ramp down
and lose the competition. The decision process ends when the activity of
the ramping-up pool reaches the predetermined threshold. For simplifica-
tion, we set the threshold as 60 Hz, where it was dependent on neither the
coherence level nor the number of choices.

We have simulated two- and four-choice decision making with a nonzero
coherence level (i.e., the biased decision making). In biased decision making,
the target inputs to the network are still symmetric among the target direc-
tions. Once the biased stimuli are presented, the total inputs to the network
are asymmetric, and the network starts to accumulate differences between
the motion direction and other directions until one target wins the com-
petition. The spatiotemporal pattern of the neural activity is similar to the
pattern of unbiased decision making. The average firing rate of the neuron
pools located around the selected target ramps up, while the average firing
rates of the neuron pools located at other targets ramp down for two- and
four-choice decision making in correct trials. The increased coherence level
leads to a steeper ramping up and a shorter reaction time (see Figure 3).
The numerical integration resulting from the partial integro-differential
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Figure 2: Neural activities for two- and four-choice decision making. (A, D) Spa-
tiotemporal activity of the pyramidal neuron pool in the reduction model. Pyra-
midal neurons are arranged along the ordinate according to their preferred
directions. The directions of the targets for two alternatives are 90◦ and 270◦,
while the directions of the targets for four choices are 45◦, 135◦, 225◦, and 315◦.
When the number of the choices increases, the target inputs and the top-down
control signal are modified accordingly, but the motion stimulus and all model
parameters are fixed. The reduced model is capable of making a decision in the
visual motion discrimination task independent of the number of the alterna-
tives. (B–C, E–F) Activity time course of neural pools located around the targets
when the number of choices is two and four, respectively.
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Figure 3: The firing rate time course of the neuron pool located around the
selected target (solid lines) and the opposite direction (dashed lines) are shown
for (A) two-choice and (B) four-choice decision making. The average firing rate
was obtained by averaging the neural activity over 200 correct trials. The line
with different gray scale denotes the different coherence levels shown as in
the legend.

equation (see Figures 2 and 3) is consistent with that of the spiking network
model (Furman & Wang, 2008) and agrees with the experimental observa-
tions (Churchland et al., 2008).

3.2 Accuracy and Reaction Time. The behaviors of the partial integro-
differential equation are consistent with the experimental observations (see
Figure 4). The accuracy (percentage of correct choices) deteriorates with
increasingly difficult tasks. On the one hand, a higher coherence level favors
higher accuracy. When the coherence level is zero, the network behaves
randomly and chooses each target with an equal probability. The network
always makes the correct decision when the coherence level is greater than
50%. On the other hand, the accuracy varies with the number of targets.
The accuracy of two-choice decision making is higher than that of four-
choice decision making, given the same coherence level. These results are
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Figure 4: Performance and reaction time of the model. (A) Correct rate of choice,
given different coherence levels for two- and four-choice decision making. A
higher coherence level leads to a higher rate of correct choice, and the correct rate
of two-choice decision making is higher than that of four-choice decision mak-
ing. The line is Weibull fitting to the data. (B) The mean reaction time decreases
as the coherence level increases and the number of choices decreases. Incorrect
decisions take longer than correct ones. The filled circles represent correct trials,
and open squares represent erroneous trials. (C, D) Distribution of the reaction
time for correct two- and four-alternative decision making, respectively. The
reaction time follows an asymmetric distribution. (E) The standard deviation of
the reaction time is linearly related to the mean reaction time, implying that the
reaction time obeys Weber’s law.

in agreement with the monkey experiments (Romo & Salinas, 2001; Shadlen
& Gold, 2004; Churchland et al., 2008) and the simulations of the spiking
network model (Wang, 2002; Furman & Wang, 2008).
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The reaction time is another important quantity to measure the decision
process. Because of the noisy background input, the reaction time varies
from trial to trial. We calculated the mean and distribution of the reac-
tion time given different coherence levels and different target numbers (see
Figures 4B–4E). For correct trials, the mean reaction time decreases as the
coherence level increases. The time required for decision making increases
in the presence of a low coherence level and a large number of tasks, in
the sense that it takes longer for the network to accumulate evidence for
difficult tasks. The mean reaction time for an incorrect trial is much longer
than that for a correct trial. The distribution of reaction time, shown in Fig-
ures 4C and 4D for two- and four-choice decision making, respectively, has
several features. First, higher coherence levels result in distributions with
smaller means and variances. Lower coherence levels lead to distributions
with larger means and variances. Second, the distribution of the reaction
time is asymmetric. The probability sharply ramps up to the peak at the left
and slowly ramps down to the right. Third, the standard deviation is posi-
tively and linearly related to the mean. We plotted the mean and standard
deviation of the reaction time in Figure 4E, which demonstrates that these
values follow a linear relationship, with SD = a + bRT, where a = −174 and
b = 0.382 for two-choice decision making, and a = −138 and b = 0.2707 for
four-choice decision making. This result indicates that the reaction time
obeys the psychophysical Weber’s law (Deco & Rolls, 2006; Deco, Scarano,
& Soto-Faraco, 2007).

4 The Nonlinear Dynamics Approach to the Decision Process

The numerical simulation results demonstrate that the partial integro-
differential system, equations 2.19 to 2.21, accurately represents the
multiple-choice decision making. In this section, we apply the nonlin-
ear dynamics approach to reveal the dynamical mechanism giving rise
to multiple-choice decision making. Considering the periodic boundary
condition and the symmetric connectivity, the system 2.19 to 2.21 can be
transformed into a series of ordinary equations by simple discretization in
the space dimension, as follows:

dSi(t)
dt

=−Si(t)
τs

+ γ (1 − Si(t))φi(t), i = 1, 2 . . . N, (4.1)

Ii(t)=
N∑

j=1

W(( j − i)�θ )Sj�θ + Iext,i + Iback, (4.2)

where �θ = 360
N , that is, the direction interval after the equidistant dis-

cretization, and N = 1024. By omitting the noisy term Inoise(θ, t) whose
mean is zero and setting the right-hand side of the ordinary equations as
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zero, we can calculate the steady states, S̄, of the system without noise
using Newton’s method (Press, Teukolsky, Vetterling, & Flannery, 1992).
The stability of the steady state is explored by introducing the perturbation
δ�S(t) to the steady state, and the system state becomes �S(t) = �̄S + δ�S(t). We
considered the evolution of the perturbation that follows the dynamics,

dδ�S(t)
dt

= Aδ�S(t), (4.3)

where A is a matrix and its component is

A(i, j) =

⎧⎪⎨
⎪⎩

−
(

1
τs

+ γφi

)
+ γ�θ [1 − �̄Si]φ

′
iW(( j − i)�θ ), i = j

γ�θ [1 − �̄Si]φ
′
iW(( j − i)�θ ), i 
= j

.

This matrix is steady state dependent, and its eigenvalues, λi, determine the
stability of the steady state. If the eigenvalue λi is positive (negative), the
steady state is unstable (stable) and the system will evolve away from (ap-
proach) the steady state along the corresponding eigenvector �νi (Strogatz,
2001).

4.1 Unbiased Decision Making

4.1.1 Stable Steady States for Two- and Four-Choice Unbiased Decision Making
After the Motion Stimulus Reaches the LIP. The steady states of the system 2.19
to 2.21 play important roles in the decision process. For two-choice decision
making, there are two stable steady states (see Figure 5A). Each stable
steady state has a high bump centered at the direction of one target and a
very small bump centered at the other direction. For four-choice decision
making, there are four stable steady states (see Figure 5B). Each stable state
has one high bump and three small bumps. The high bump localizes at the
direction of one target, and the small bumps are located at the directions
of the other targets. These stable steady states are absorbing attractors of
the system. No matter where the initial state is located, the network will
eventually approach one of these stable states and finally choose the target
at which the high bump of the stable steady state localizes. Notably, the
number of stable states is determined by the number of the targets.

4.1.2 Unstable Steady States for Two- and Four-Choice Unbiased Decision
Making After the Motion Stimulus Reaches the LIP. Unstable steady states are
more complex than stable steady states. For two-choice decision making,
there are three types of unstable steady states (see Figure 5C). The first
one, �̄Su,1, has two identical bumps, each corresponding to one target (see
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Figure 5: Steady states of the reduced system. (A, B) Stable steady states.
(A) There are two one-bump stable steady states for two-choice decision mak-
ing and (B) four one-bump stable steady states for four-choice decision making.
The directions of the targets for two alternatives are 90◦ and 270◦, while the di-
rections of the targets for four choices are 45◦, 135◦, 225◦, and 315◦. The motion
stimuli and target inputs are shown at the bottom. (C, D) Unstable steady states.
(C) There are five unstable steady states for two-choice decision making, which
are denoted as �̄Su,1, �̄Su,2, �̄Su,3, �̄Su,4, and �̄Su,5 from top to bottom, respectively.
�̄Su,1 has two bumps with the same height, and these are located at the targets.
�̄Su,2 and �̄Su,3 have one high bump, which is centered between the targets. �̄Su,4

and �̄Su,5 have one large bump, which is located between the targets and two
small bumps centered at the targets. �̄Su,1 is responsible for decision making.
(D) The three types of unstable steady states for four-choice decision making
are relevant to the dynamics of the decision process and are denoted as �̄Su,1, �̄Su,2,
and �̄Su,3 from top to bottom, respectively. The number of each type of unstable
steady states is equal to the number of the combination: four combination, three
combination, and two combination from four targets, respectively.

the upper panel of Figure 5C). The second type of unstable steady state,
which includes �̄Su,2 and �̄Su,3, has one bump located between two targets
(see the second panel of Figure 5C). The third type of unstable steady state,



NECO-07-12-1722 neco.cls April 29, 2013 15:1

U
nc

or
re

ct
ed

Pr
oo

f
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which includes �̄Su,4 and �̄Su,5, has one intermediate high bump, with two
small bumps located at the targets (see the bottom panel of Figure 5C). For
four-choice decision making, there are five types of unstable steady state
(see Figure 5D). The first type, �̄Su,1, has only one unstable steady state with
four identical bumps located at each target. The second type of unstable
steady state, �̄Su,2, has three high bumps and one low bump. Each bump
of this type of unstable steady state is centered on the target. Because the
low bump can be centered on any one of the targets, this type has four
different steady states. The third type of unstable state, �̄Su,3, has two high
bumps and two low bumps. Each bump centers at the targets, and there
are six different unstable steady states. The fourth type of unstable steady
state, �̄Su,4, has one high bump, which localizes between two targets. Thus,
there are four unstable steady states belonging to this type. The last type of
unstable steady states, �̄Su,5, has one high bump located between two targets
and four small bumps located at the targets. For clarity, Figure 5D displays
only one unstable steady state for each of first three types. In addition to
the four identical bumps steady state �̄Su,1, the number of other types of
unstable steady states is equal to the combination of high bumps and small
bumps. Therefore, there are 1, 4, 6, 4, and 4 for each type of unstable steady
state.

4.1.3 Dynamics in the Vicinity of the Unstable Steady States and the Decision
Process Without Noise. Given a steady state �̄S, the evolution of the system in
the vicinity of the steady state can be approximated as (Strogatz, 2001)

�S(t) = �̄S +
N∑

i=1

cie
λit�νi, (4.4)

where N is the number for the space dimension discretization, λi is the ith
eigenvalue, �νi is the corresponding eigenvector, and the coefficient ci is the
projection coefficient of the difference between the initial state �S0 and the
steady state �̄S on the ith eigenvector �νi:

ci = �νT
i (�S0 − �̄S)

�νT
i �νi

. (4.5)

Equation 4.4 indicates that the system contracts on the invariant mani-
fold, which is tangent to the eigenvector with a negative eigenvalue, and
expands in the invariant manifold tangent to the eigenvector with a positive
eigenvalue. As the result of the expansion in the invariant manifold tangent
to the eigenvector with the positive eigenvalue, the system will evolve away
from the unstable steady states and eventually approach one of the stable
steady states, finally leading to a decision among the targets. As mentioned
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above, the activity bumps are stable during the targets’ presentation be-
cause the inhibitory input is strong during that time. This phenomenon
has been demonstrated by the fact that the two-bump state for two choices
and the four-bump state for four choices are always stable when analyzed
similar to the method in Figure 9A. After the motion stimulus onset, both
the target and inhibitory inputs will gradually decrease, and these states
will become unstable. The system is gradually driven toward the vicinity
of the unstable steady state �̄Su,1 for both two and four choices. Therefore,
we focused on the dynamics of the system in the vicinity of the unstable
steady states, especially �̄Su,1.

For two-choice decision making, we calculated the spectrum of the un-
stable steady state �̄Su,1, which has two equal bumps. We found that only
one eigenvalue λ0 is positive (see Figure 6A), while the others are nega-
tive. We also calculated the corresponding eigenvectors and found that the
upward and downward bumps in the eigenvector corresponding to that
positive eigenvalue (see Figure 6A) demonstrate the competition between
two targets. Given any initial state in the vicinity of the steady state �̄Su,1,
the projection coefficient ci can be calculated according to formula 4.5. The
coefficient c0 determines the choice of decision making because the system
shrinks to the steady state in the manifold tangent to the eigenvector with
a negative eigenvalue and expands in the manifold tangent to the eigen-
vector with a positive eigenvalue. If c0 > 0, the activity of the 270◦-selective
pool increases, and the activity of the 90◦-selective pool decreases, which
causes the 90◦ target to lose the competition. If c0 < 0, the firing rate of the
270◦ preferring neurons decreases while the firing rate of the 90◦ preferring
neurons increases, causing the 270◦ target to lose the competition.

For clarity, we showed the time evolution of the system in Figure 7.
Starting from an initial state, which is set as the subtraction of the steady
state by a small perturbation �S = �̄S − ��S, we can numerically approximate
the time evolution of the system according to formula 4.4. In Figure 7A, we
chose a special perturbation ��S with c0 = −0.1 and ci = 0(i 
= 0). The figure
shows that the firing rate of the 90◦-selective pool increases and the firing
rate of the 270◦-selective pool decreases over time. We also show three other
examples in Figure 7B. The perturbation of the first two are deterministic
with the parameters c0 < 0, ci = 0(i 
= 0), and c0 > 0, ci = 0(i 
= 0), and the
third perturbation is random with c0 = −0.0123. The results confirm that c0
determines which target will win the competition.

For four-choice decision making, we also calculated the spectrum of each
unstable steady state. Similar to the case of two choices, the local dynamics
in the vicinity of �̄Su,1 also plays a major role in the early stage of four-
choice decision making. The steady state �̄Su,1 has only one positive triplet
eigenvalue (see Figure 6B), and the other eigenvalues are negative. The
corresponding eigenvectors of the positive triplet eigenvalues are �ν0,0, �ν0,1,
and �ν0,2 (see Figure 6B). �ν0,0 has two upward bumps at 135◦ and 315◦ and
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Figure 6: Examples of the eigenvectors of the unstable steady states, where
the dashed line denotes an eigenvector with a positive eigenvalue. (A) The
eigenvector of the unstable steady state �̄Su,1 for two-choice decision making
with a positive eigenvalue. (B) The unstable steady state �̄Su,1 for four-choice
decision making has three identical positive eigenvalues, and the corresponding
eigenvectors are shown from top to bottom. (C) The unstable steady state �̄Su,2
for four-choice decision making has two identical positive eigenvalues and the
corresponding eigenvectors shown from top to bottom. (D) The unstable steady
state �̄Su,3 for four-choice decision making has only one positive eigenvalue. The
eigenvector for this positive eigenvalue is similar to the eigenvector in panel A.

two downward bumps at 45◦ and 225◦. �ν0,1 has one upward bump at 45◦

and one downward bump at 225◦, and �ν0,2 has one upward bump at 315◦

and one downward bump at 135◦. From the eigenvector �ν0,0, we can view
two upward bumps as the vertical group and two downward bumps as
the horizontal group, and this eigenvector depicts the competition between
these two groups in the early stage of decision making. In addition, the
eigenvectors �ν0,1 and �ν0,2 depict the competition between two bumps in
each group. Given an initial state close to �̄Su,1, the coefficients c0, c1, and
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Figure 7: The evolution of noise-free decision making. (A) The evolution of
noise-free two-choice decision making, given the perturbation of �S as shown
in the (inset), where c0 = −0.1 and ci = 0 for i > 0. (B) The unstable steady state
�̄Su,1 for two-choice decision making and the state at 300 ms given different �S
perturbations, as shown in the top row. (C) The perturbation and the state at time
300 ms. Three different perturbations to �̄Su,1 for four-choice decision making are
shown in the first row, and the corresponding time evolution is shown in the
second row. Two different perturbations to �̄Su,2 and one perturbation to �̄Su,3 for
four-choice decision making are shown in the third row, and the corresponding
time evolutions are shown in the bottom row.
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Table 1: The Winning Target Given Unitary Perturbation to �̄Su,1.

c0 +1 +1 +1 +1 −1 −1 −1 −1
c1 +1 +1 −1 −1 +1 +1 −1 −1
c2 +1 −1 +1 −1 +1 −1 +1 −1
Winner 315◦ 135◦ 315◦ 135◦ 45◦ 45◦ 225◦ 225◦

c2 determine how the system evolves away from the unstable steady state.
For example, if c0 = +1, c1 = +1 and c2 = +1, the increase of activity at
approximately 45◦ caused by �ν0,1 will almost be canceled by the decrease of
activity caused by �ν0,0, and the same is true for the activity at approximately
135◦. However, the activity at approximately 225◦ will decrease, and the
activity of approximately 315◦ will increase. The different combination of
the coefficients could lead different targets to win the early competition
between targets (see Table 1). Usually, the increase of activity to one target
caused by one eigenvector could not be canceled by the decrease of activity
to the same target caused by other eigenvectors because the coefficients are
not equal to ±1 and the system will be driven toward the unstable steady
state with three or two bumps: �̄Su,2 or �̄Su,3. �̄Su,2 has three equal-height bumps
located at 45◦, 135◦, and 225◦ and one very small bump located at 315◦ with
one positive doublet of eigenvalues (see Figure 6C). The positive doublet
eigenvalues correspond to two eigenvectors (see Figure 6C),�ν1,0 and�ν1,1.�ν1,0
has two upward bumps located at 45◦ and 225◦ and one downward bump
located at 135◦.�ν1,1 has one upward bump located at 45◦ and one downward
bump located at 225◦. �̄Su,2, which has two identical bumps located at 45◦and
135◦, has only one positive eigenvalue (see Figure 6D). The eigenvector
corresponding to this positive eigenvalue �ν2,0 has one upward bump and
one downward bump (see Figure 6D), a fact that supports the competition
between two bumps. As examples of the evolution of the system in the
vicinity of unstable steady state, we perturbed �̄Su,1, �̄Su,2, and �̄Su,3 using
different ��S. The competition between targets can be displayed by the
coefficients of the projection of �S0 − �̄S on the eigenvectors (see Figure 7C).

4.2 Biased Decision Making. For unbiased decision making, the basic
mechanism underlying decision making is that the system will evolve away
from the unstable steady state with equal bumps, and the unstable invariant
manifold starts from the unstable steady state, which breaks the symmetry
of the inputs. For biased decision making, the system is driven to a state
with equal bumps by the target signal before the motion signal reaches
the decision area. The initial state is close to the unstable steady state after
the signal of asymmetric motion arrives at the decision area. The unstable
steady states of the system change due to the inputs of asymmetric motion.
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The reaction time and the performance of decision making also change with
the asymmetric motion input.

4.2.1 Steady States of Biased Two-Choice Decision Making After the Motion
Signal Reaches the LIP. Given an asymmetric input or nonzero coherence
level, the system 2.19 to 2.21 for two-choice decision making has two stable
steady states and five unstable steady states (see Figure 8A). The stable
steady states are located in the direction of the targets and are responsible for
the choice. The unstable steady states have significant differences from those
of unbiased decision making. First, the symmetry of the two-bump unstable
state �̄Su,1 is broken. The height of the bump centered in the coherent motion
direction is lower than that of the other bump. The difference between
two bumps is almost linearly correlated with the motion coherence, and a
higher coherence level leads to a larger difference (see Figure 8D). Second,
the higher bump of the unstable steady states, �̄Su,2 and �̄Su,3, whose higher
bumps localize between the targets, shifts toward the direction opposite to
the coherent motion. This shift intuitively seems to enlarge the attractive
basin for the stable steady state corresponding to the correct choice.

Before the onset of the motion stimulus, the target inputs are symmet-
rical, and the system is driven to the initial state, which has two identical
bumps and is close to the unstable steady state �̄Su,1. Therefore, we analyzed
the local dynamics of this unstable steady state. Similar to the unbiased
scenarios, �̄Su,1 has only one positive eigenvalue, and the corresponding
eigenvector, �ν0, has one upward bump and one downward bump located at
the targets. This eigenvector underlies the competition between two targets
(see the first panel of Figure 8C).

4.2.2 Steady States of Biased Four-Choice Decision Making After the Motion
Signal Reaches the LIP. The steady states of the system 2.19 to 2.21 for four-
choice decision making with biased motion stimulus are similar to those for
unbiased four-choice decision making. The system has four stable steady
states. Each of these has one high bump located in the direction of the target
and is responsible for the final choice. The system still has five types of
unstable steady states, which are similar to unstable steady states of the
system responsible for unbiased four-choice decision making. For simplic-
ity, we have shown only an example for �̄Su,1, �̄Su,2, and �̄Su,3 in Figure 8B.
The unstable steady states are influenced by asymmetric motion stimuli.
First, the symmetry between the four bumps of the unstable steady state
�̄Su,1 is broken. The bump located in the direction of the motion shrinks and
becomes lower than the other three bumps, which are identical in height. A
higher coherence level leads to a larger difference between the bumps (see
Figure 8E). Second, the eigenvalues of the four-bump unstable steady state
�̄Su,1 change significantly (see the last three panels of Figure 8C). The positive
triplet eigenvalues become one positive singlet and one positive doublet of
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Figure 8: Biased decision making. (A) The steady states of the system after
the motion stimuli and target signals arrive at the decision area for two-choice
decision making. The system has two stable steady states denoted by solid lines
and five unstable steady states denoted by dashed lines. The unstable steady
states �̄Su,2 and �̄Su,3 shift in the direction opposite the motion stimuli. (B) The
steady states of the system after the motion signal stimuli arrive at the decision
area for four-choice decision making. The system has four stable steady states
denoted by solid lines, and the numbers of the unstable steady states are denoted
by dashed lines (not all of the unstable steady states are shown here). (C) For
two alternatives, there is only one positive eigenvalue for the unstable steady
state �̄Su,1. The eigenvector corresponding to the positive eigenvalue �ν0 is shown
in the first panel. For four choices, there are three positive eigenvalues for the
unstable steady state �̄Su,1, and the corresponding eigenvectors are shown in
the remaining panels. (D, E) The difference between the height of the two or
four bumps of the unstable steady state �̄Su,1 linearly increases with increasing
coherence levels.
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Table 2: The Winner Given the Unitary Perturbation of �̄Su,1 as Shown in the
Last Three Panels of Figure 8.

c0 +1 +1 +1 +1 −1 −1 −1 −1
c1 +1 +1 −1 −1 +1 +1 −1 −1
c2 +1 −1 +1 −1 +1 −1 +1 −1
Winner 135◦ 135◦ 135◦ 135◦ 315◦ 315◦ 225◦ 45◦

eigenvalues. Third, the eigenvectors corresponding to positive eigenval-
ues of the unstable steady state �̄Su,1 also undergo remarkable changes. The
eigenvector �ν0,0, has three small downward bumps and one large upward
bump. The upward bump is located in the direction of the motion, and this
eigenvector favors the correct choice. Fourth, the unstable steady states �̄Su,4
and �̄Su,5, whose bumps are located between two targets, shift away from
the motion direction (not shown).

4.2.3 Dynamics in the Vicinity of the Unstable Steady State �̄Su,1 and the
Decision Process Without Noise. Although the motion stimulus is biased,
the initial state of the system, �S0, has identical bumps located at each of
the targets because the target signal and the top-down control signal are
symmetric. Therefore, the system is set in the vicinity of the unstable steady
state �̄Su,1 and the early stage of the decision process is determined by the
local dynamics of the steady state as described by formula 4.4.

For biased two-choice decision making, the coefficient of c0 also de-
termines the final choice. Given a positive c0, the 90◦ target will win the
competition, while the 270◦ target will win the competition given a nega-
tive c0. Due to the symmetric initial state �S0, and the asymmetric unstable
steady state �̄Su,1, the difference of �S0 − �̄Su,1 has one small upward bump,
which is located in the direction of the motion because the bump of �̄Su,1,
located in the motion direction, is lower than the other bump. If the motion
direction is 90◦, ��S should have a small upward bump located at 90◦ in
the same direction as the eigenvector ν0,0 (see Figures 8A and 8C). Thus,
the coefficient c0 > 0 and the activity of neurons preferring 90◦ will increase
and lead to the choice of the 90◦ target. If the motion direction is 270◦, the
lower upward bump of the unstable steady state �̄Su,1 will be located at 270◦.
The eigenvalue, eigenvector, and the coefficient c0 will change accordingly.
The dynamic process is similar, and the system will choose the target at
270◦.

For biased four-choice decision making, the combination of the first three
projection coefficients determines the final choice (see Table 2). For example,
given the combination of c0 = −1, c1 = −1, and c2 = +1, the activity approx-
imately at 135◦ and 315◦ will decrease due to the larger bump located at
315◦ in the second eigenvector �ν0,1. Finally, the activity at approximately
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225◦ will increase following the third eigenvector �ν0,2. Similar to biased
two-choice decision making, the difference of ��S = �S0 − �̄Su,1 has one small
upward bump, which is located in the motion direction because the bump of
�̄Su,1, located in motion direction, is lower than the other three bumps. In the
example shown in Figure 8B, the motion direction is 135◦, and the bump of
�̄Su,1, located at 135◦, is lower, and ��S has one small upward bump located at
135◦. Thus, the dominant term of the projection of ��S onto the eigenvectors
should be the projection onto the eigenvector �ν0,0 with a positive coefficient
c0. This implies that the eigenvector �ν0,0 dominates the evolving-away pro-
cess, the activity of neurons preferring 135◦ will increase, and the system
will choose the target at 135◦.

As a summary of the nonlinear analysis, we explored the dynamical
architecture of the partial integro-differential system underlying two- and
four-alternative decision making. There are several notable differences be-
tween two- and four-choice decision making. First, the number of stable
steady states representing the decision options is different and equals the
number of targets. Second, the decision process for four choices is not only
related to the unstable manifolds of the unstable steady state with the four
identical bumps of �̄Su,1, but also to those of other unstable steady states,
such as �̄Su,2 and �̄Su,3. Three unstable manifolds of the steady state �̄Su,1 make
the system evolve toward any of stable and unstable states except �̄Su,1. Two
unstable manifolds of the steady state �̄Su,2 lead to the system’s evolution
toward any of the steady states except �̄Su,1 and �̄Su,2. One unstable manifold
of the steady states �̄Su,3 guides the system to evolve toward any of sta-
ble states. The structure composed of these three types of unstable steady
states predominates the system’s evolution from the initial state to one of
the stable states for a decision process with four choices.

4.3 Parameter Ranges of the Network Supporting Decision Making.
In numeric simulations and nonlinear analysis, only the top-down control
signal and the number of neuron pools receiving the target inputs vary with
the number of choices. The other parameters remain unchanged, indicat-
ing that the parameters of the network support either two- or four-choice
decision making. Therefore, it is important to know the dependence of the
results on the parameters we used. Considering that the system can make a
decision if its steady state, �̄Su,1, is unstable for two-choice decision making
and that the steady states �̄Su,1, �̄Su,2, and �̄Su,3 are unstable for four-choice de-
cision making, we could calculate the steady states and show their stability
by variation of parameters, including the external input strength Jext and
the iso-directional connection strength J+.

For simplification, we considered only unbiased decision making. In Fig-
ure 9A, we showed the influence of Jext on the peak value and the stability
of the steady states �̄Su,1, �̄Su,2, and �̄Su,3 for unbiased four-choice decision
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Figure 9: Parameter ranges of the network supporting decision making.
(A) The peak of the highest bump of the unstable steady states �̄Su,1, �̄Su,2, and �̄Su,3
as a function of the external input strength Jext for four choices. Solid (dashed)
lines indicate that the corresponding states are stable (unstable). The param-
eter in the interval between two vertical lines supports a decision. (B) The
overlapping parameter domains for two- and four-choice decision making. The
parameter ranges supporting decisions are enveloped by the dark curve for two
choices and the gray curve for four choices.

making. The peaks of these steady states increase with increasing Jext. The
four-bump steady state �̄Su,1 is stable when Jext is small and becomes un-
stable as Jext increases, finally becoming stable when Jext increases further.
The three-bump steady state �̄Su,2 emerges when the four-bump steady state
�̄Su,1 loses its stability with increasing Jext. The stability of three-bump steady
state �̄Su,2 changes from unstable to stable with increasing Jext. The two-
bump steady state �̄Su,3 exists only when Jext is larger than a certain value.
This steady state is unstable when Jext is small and becomes stable as Jext
increases. Notably, the critical point at which the steady state changes from
unstable to stable increases with the number of high bumps of the steady
states. Therefore, according to the decision condition we mentioned above,
a decision can be made only in the range between two vertical lines rep-
resenting two critical points, at which the four-bump steady state becomes
unstable and the two-bump steady state remains unstable, respectively. For
two choices, the peak value of the two-equal-bump steady state and the
corresponding stability change in the same way as the four-bump steady
state �̄Su,1 for four-choice decision making.

We also calculated the steady states and their stability by simultaneous
variation of J+ and Jext for two- and four-choice decision making (see Fig-
ure 9B). We found that parameters supporting two-choice decision making
form a V-shaped domain in the parameter space of J+ − Jext , and the pa-
rameters supporting four-choice decision making form another V-shaped
domain in the parameter space of J+ − Jext . The smallest J+ is approximately
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1.5 for two-choice decision making and approximately 1.511 for four-choice
decision making, implying that recurrent excitation values below a certain
level cannot support a decision. The parameter domains supporting two-
and four-choice decision making have a large degree of overlap, indicat-
ing that our partial integro-differential system can robustly represent the
multiple-choice decision task and that our results are generalizable.

4.4 Theoretical Approximation of the Reaction Time. One main goal
of this study was to understand the mechanism underlying the different re-
action times for different coherence levels and different numbers of choices,
that is, to understand why higher coherence levels lead to quicker decisions
and why it takes longer to make a decision when there are more alterna-
tives. To achieve this aim, we investigated the local dynamics of the unstable
steady state �̄Su,1 because the initial state of the system �S0 lies in the vicinity
of the unstable steady state �̄Su,1 and the local dynamics in the vicinity of �̄Su,1
predominantly determine the evolutionary process from �S0 to the decision
threshold.

As described in the local dynamics of the steady state, equation 4.4,
the system exponentially departs from the steady state along the direction
of the eigenvector �νi corresponding to the positive eigenvalue λi with a
time constant τi defined as 1/λi. The larger time constant implies slower
evolution and longer reaction time, while the smaller time constant implies
faster evolution and shorter reaction time. For two-choice decision making,
there is only one positive singlet eigenvalue for �̄Su,1; thus, we define 1/λ0
as the time constant of the system, τ0. For unbiased four-choice decision
making, there is one positive triplet eigenvalue for �̄Su,1. In the case of biased
decision making, however, the unstable steady state �̄Su,1 has one positive
singlet of eigenvalues, λ0, corresponding to the eigenvector �ν0, and one
positive doublet of eigenvalues, λ1,2, corresponding to the eigenvectors
�ν1 and �ν2. Because evolution along the eigenvector corresponding to the
singlet eigenvalue plays a major role in correct decision making, we define
1/λ0 as the time constant of the system, τ0. Therefore, according to the local
dynamics, formula 4.4, the reaction time for the correct trials, DT, can be
qualitatively approximated as

DT � τ0{ln[Sth − �̄Su,1(θmot )] − ln c0 − ln�ν0,0(θmot )} + 280 ms, (4.6)

where Sth is the decision threshold and 280 ms includes the latency of the
motion stimulus (200 ms) and the postreaction time due to execution of the
saccade (80 ms) (see equation 2.30). For simplicity, here we considered only
the dimension in the motion direction because a correct decision is made
when the activity of the pool preferring the motion direction exceeds the de-
cision threshold. According to this formula, the reaction time is determined
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by the time constant τ0, the difference between the decision threshold and
the value of the unstable state �̄Su,1 in the motion direction, the projection
coefficient c0 determined by the difference between the initial state S0 and
the unstable steady state, and the eigenvector �ν0,0 in the motion direction.

We calculated the time constant for two- and four-choice decision mak-
ing given different coherence levels, and the results indicate that the time
constant of four-choice decision making is significantly longer than that
of two-choice decision making (see Figure 10A), and the mean reaction
time for four-choice decisions is longer than that for two-choice decisions.
However, the time constant cannot explain the fact that the mean reaction
time decreases with increasing coherence levels because the time constant
of the system increases slightly with the coherence levels for two choices
and increases dramatically for four choices. We noticed that the coefficient
c0 varies with the coherence level as the unstable steady state �̄Su,1 varies
with the coherence levels. A higher coherence level leads to a lower bump
located in the motion direction in �̄Su,1 (see Figures 8D and 8E), which re-
sults in a larger difference (��S) and a larger projection coefficient c0 (see
Figure 10B). Therefore, the mean reaction time decreases with the projection
coefficient c0 (see formula 4.6), accounting for the observation that a higher
coherence level leads to a shorter mean reaction time.

To explicitly demonstrate the overall effects of the coherence level and
the number of choices on the reaction time, we calculated approximate
reaction time (see formula 4.6) with the decision threshold Sth = 0.77 corre-
sponding to the firing rate of 60 Hz. The theoretical reaction times shown
in Figure 10C demonstrate a similar dependence of the decision time on the
coherence level and the number of alternatives. The decision time is a mono-
tonically decreasing function of the coherence level, and longer decision
time was also observed for decisions with more alternatives. The approxi-
mated reaction time is not precisely the same as that in the simulation. The
discrepancy may be due to two reasons. First, formula 4.6 is simply derived
from the local dynamics in the vicinity of the unstable steady state and thus
may not be suitable when the system evolves far from the unstable steady
state. Second, the approximation ignores the noise, which will influence the
decision time. However, the approximation is qualitatively consistent with
the observations in our simulations, in monkey experiments (Churchland
et al., 2008), and in the spiking network model (Wang, 2002; Wong & Wang,
2006; Furman & Wang, 2008). The approximation clearly demonstrates that
the decision time depends on the time constant of the unstable steady state
and the projection coefficient, a relationship that has not been previously
reported in the literature.

5 Discussion

In this study, we constructed a partial integro-differential system to im-
plement multiple-choice decision making. Our major findings include that
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Figure 10: Approximation of the reaction time. (A) The time constants of the
system are defined by the reciprocal of the largest positive eigenvalue of the
unstable steady state �̄Su,1. (B) The projection coefficient, c0, for two- and four-
choice decision making increases with the coherence level of the motion stimuli.
(C) Approximated reaction time (see formula 4.6) for two- and four-choice
decision making.
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(1) the dynamics underlying two-choice decision making are different from
those underlying four-choice decision making, in that the two-bump unsta-
ble steady state of the system is responsible for two-choice decision making,
while four-choice decision making relies on three types of unstable steady
states, and that (2) the observation that four-choice decision making requires
a longer time than two-choice decision making could be explained by the
time constant of their unstable steady states, but that the project coefficient,
c0, can account for quicker decisions, given higher coherence levels of the
motion stimulus.

5.1 A Partial Integro-Differential System for Multiple-Choice Deci-
sions. Many neurophysiological studies have revealed that decision mak-
ing involves various brain areas, including the lateral intraparietal cortexes
(LIP), the frontal eye fields (FEF), and the prefrontal cortex (Kim & Shadlen,
1999; Romo & Salinas, 2001; Gold & Shadlen, 2007). Based on the neural data
resulting from the monkey experiments (Roitman & Shadlen, 2002; Shadlen
& Gold, 2004; Churchland et al., 2008), biophysically plausible spiking net-
work models including the discrete networks (Wang, 2002; Albantakis &
Deco, 2009) and the continuous recurrent network (Furman & Wang, 2008)
have been proposed to elucidate the neural basis of perceptual decision
making in visual random-dot discrimination tasks. Here, using a mean
field approach and a number of approximations (Wong & Wang, 2006),
we constructed a partial integro-differential system based on the spiking
network model by Furman and Wang (2008) to implement multiple-choice
decision tasks. We showed that the behaviors of our model are consistent
with the experimental observations (Roitman & Shadlen, 2002; Churchland
et al., 2008) and the results of the models mentioned above. A stronger mo-
tion strength favors increased accuracy and quicker response, while more
choices lead to reduced accuracy and longer reaction times. We also found
a linear relationship between the mean and the standard deviation of the
reaction time for two- and four-choice decisions, a result demonstrating
that the reaction time obeys the psychophysical Weber’s law (Deco & Rolls,
2006; Deco et al., 2007).

Meanwhile, the mechanisms underlying decision making have been
extensively investigated. For example, Wilimzig, Schneider, and Schoner
(2006) used dynamic field theory to investigate saccade decision making
and concluded that instabilities are the basis of decision making. Wong
and Wang (2006) used a reduced two-variable model omitting the currents
mediated by the AMPA receptor and found that the system with the sad-
dle node structure underlies two-choice decision making. Miller and Katz
(2010) also achieved similar results when they studied stochastic transitions
between neural states in taste-related decision making. Our partial integro-
differential system, derived from a biologically plausible spiking network
model, provides a unified framework for a deeper understanding of the
mechanisms underlying multiple-choice decision making.
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5.2 Different Dynamics Underlying Two- and Four-Choice Decision
Making. The nonlinear dynamic analysis indicates that the partial integro-
differential system for decision making has different dynamics given differ-
ent numbers of choices. For two-choice decision making, the two-bump un-
stable steady state �̄Su1 is responsible for the decision. Populations, selective
for different directions of targets, compete with one another in the unstable
manifold connected with �̄Su1, which is consistent with previous research
(Wong & Wang, 2006; Wong et al., 2007). These authors demonstrated that
two-choice decision making can be implemented by a two-dimensional sys-
tem with the saddle node structure, indicating that the process of two-choice
decision making has one-dimensional dynamics (Ganguli et al., 2008).

In contrast, our study implies that four-choice decision making may not
be a one-dimensional process. The partial integro-differential system has
three types of unstable steady states �̄Su,1, �̄Su,2, �̄Su,3 for a four-choice decision
system. These unstable steady states and the connecting unstable manifolds
predetermine the competition among four targets and implement the four-
choice decision task. The four-bump steady state �̄Su,1 connects with three
unstable manifolds, resulting in competition between and within groups
during the decision process. For unbiased four-choice decision making,
two upward bumps of the eigenvector �ν0,0 located at 135◦ and 315◦ and
the downward bumps located at 45◦ and 225◦ indicate that the network
organizes into horizontal and vertical directions and the competition takes
place between these two groups. The eigenvector�ν0,1 has one upward bump
located at 45◦ and one downward bump located at 225◦. This eigenvector
is responsible for the competition between the leftward and rightward di-
rections. The eigenvector �ν0,2 has one upward bump at 145◦ and one down-
ward bump located at 315◦ and is responsible for the competition between
upward and downward directions. However, for unbiased four-choice de-
cision making, the competition between and within the groups will take
place simultaneously at the same speed because the time constants of these
three unstable manifolds are equal.

5.3 Projection Coefficients and Decision Processes. Our research high-
lights the role of the projection coefficients in the decision process. The
projection coefficient ci reflects how the the evolution of the system along
the manifold tangent to the eigenvector �νi which is equivalent to the eigen-
functions of the interaction kernel in the continuous attractor model (Fung,
Wong, & Wu, 2008, 2010), and represents distortions in the height and po-
sition of the bumps (not shown). Our research elucidates the influence of
the projection coefficients on the decision from two aspects. First, we found
that the combination of projection coefficients can predict the final choice in
the decision task. Here, a four-choice decision can be used as an example.
Because c0, c1, and c2 are the projection coefficients of the difference �S0 − �̄Su,1
onto the eigenvectors �ν0,0, �ν0,1, and �ν0,2, the final choice can be predicted by
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the combination of ci given unbiased four-choice decision making and the
unitary perturbation of �̄Su,1 (see Table 1). For biased four-choice decision
making, the target located in the motion direction will win the competition,
given c0 > 0, regardless of c1 and c2; this implies that the network will make
mistakes if c0 < 0. The network will choose the direction opposite to the
motion if c1 > 0 and the coefficient c2 determines which of the other two
targets wins the competition. In this case, the probability of making a correct
choice does increase (see Table 2).

Second, our research demonstrates that project coefficients play a role
in reaction time. Reaction time has been worked out based on the first
passage time of the stochastic process with the variant boundary (Smith,
2000; McMillen & Holmes, 2006). The dynamic analysis has shown that
the time constant of the unstable steady state of the decision system is
positively related to the reaction time (Wong & Wang, 2006; Wong et al.,
2007). Similarly, our research has shown that the unstable steady state of
decision systems with more alternatives has a larger time constant, given an
identical coherence level. However, we found that the projection coefficient
c0 plays an important role in reaction time. In the decision task, the decision
is made once the system reaches the decision threshold starting from the
initial state, which is close to the unstable steady state �̄Su,1. Considering
that the stimuli of the targets and background noise are invariant to the
coherence level of the motion, the initial state �S0 is identical in the different
trials. However, the unstable steady state �̄Su,1 varies with the coherence
level of the motion; thus, the difference �S = �S0 − �̄Su,1 and the coefficient c0
vary with the coherence level. Consequently, the reaction time is influenced
by the coherence level of the motion. It is worth noting that the influence of
the coherence level of the motion on the reaction time through the projection
coefficient of the difference between the initial state and the unstable steady
state on the eigenvectors has not been previously reported.

5.4 The Discrete Recurrent Network and the Continuous Recurrent
Network. In recent years, two types of biophysically plausible spiking net-
work models have been proposed to investigate perceptual decision making
in the visual random-dot discrimination task. One type is the discrete recur-
rent attractor model that represents the choice alternatives by several sepa-
rate and homogeneous neural populations (Wang, 2002; Albantakis & Deco,
2009) and the other is the continuous recurrent attractor model that repre-
sents a continuum of directions of motion (Furman & Wang, 2008; Liu &
Wang, 2008). It is worthwhile to compare the two types of the models. First,
these models have been extensively used to investigate higher cognitive
functions in addition to decision making. The discrete model has been used
to investigate working memory with discrete item and hysteresis (Brunel
& Wang, 2001; Amit, Bernacchia, & Yakovlev, 2003; You, Meng, Huan, &
Wang, 2011). The continuous model also has been used to characterize
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visual working memory (Compte et al., 2000; Edin et al., 2009; Wei, Wang,
& Wang, 2012). Second, these two types of models share similar dynamics in
decision making. For multiple-choice decision making, a spiking network
with four discrete neuron pools has been used to investigate four-choice de-
cision making (Albantakis & Deco, 2009). Mean field analysis showed three
types of states of the model: the decision state, the spontaneous state, and
mixed states. The existence and stability of these states determine whether
decisions can be made. In our continuous model, there are stable states
(one-bump states), unstable states with two or four bumps, and other un-
stable states. The local dynamics of the unstable steady state �̄Su,1 indicate
how the continuous model can illustrate the decision process. Third, the dy-
namic structure, including the stable and unstable steady states, depends
on the parameters of the model. We showed the dependence of the steady
states and the corresponding stability on the parameter configurations (the
external input strength and the strength of the iso-directional connections),
indicating a broad parameter range simultaneously supporting two- and
four-choice decision making in our continuous model. Finally, although the
continuous model seems more complex than the discrete model, it is much
easier to alter the number of options in the decision-making task using a
continuous model.

Appendix: Symbols, Variables and Parameters in the Model

Populations
E, I Pyramidal cells (E), interneurons (I)
θ Pyramidal cells: tuned by their preferred directions, which

uniformly cover all directions along a circle; interneurons:
nonselective

Neurons
rE,I Instantaneous firing rate of pyramidal cells and

interneurons, respectively
τr Time constant of the population firing rate
cE,I, IE,I, gE,I Parameters of the activation function φ(Isyn) of the excitatory

and inhibitory populations

Synapses and Synaptic Currents
AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

receptors
NMDAR N-methyl-D-aspartate receptors
GABAR Gamma-aminobutyric acid receptors
SAMPA, SNMDA(S), SGABA Gating variables of AMPAR, NMDAR and GABAR,

respectively
τAMPA, τNMDA(τs), τGABA Time constants of their gating variables
IE,syn, II,syn Total synaptic currents to pyramidal cells and interneurons,

respectively

I
T1→T2
R Synaptic currents from T1 to T2 mediated by R receptors,

R ∈ {AMPA, NMDA, GABA}, T1 ∈ {E, I, Ext, Back},
T2 ∈ {E, I}
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JR,T2T1
Contribution coefficients of the gating variables of R receptors to synaptic

currents of pyramidal cells and interneurons, T1, T2 ∈ {E, I}
JEE Effective NMDAR-mediated synaptic conductance in the partial

integro-differential system
JEIE Effective synaptic conductance of mutual inhibition in the partial

integro-differential system
W(�θ ) Overall synaptic conductance of mutual interactions of excitatory pools in

the partial integro-differential system

Connectivity
ω(�θ ) The connection strength between pyramidal cells is a gaussian function of

the difference between their preferred directions (�θ )
ωE↔I, ωI↔I Connections to and from interneurons
J−, J+, σ

w
Strength of the cross- and iso-directional connections and connection

width of pyramidal cells

Task-Related External Stimuli and Noise Input
ITar
AMPA Target input

ntar Number of targets
θtar Direction of the targets. Two choices: 90◦, 270◦; four choices: 45◦, 135◦,

225◦, 315◦
IMot
AMPA Motion stimulus
θmot Random-dot motion direction
c′ Coherence level, percentage of coherently moving dots
Jext External input strength
Icontrol Top-down control signal
Iinhibitory Inhibitory input
Inoise Time-varying noise input
σ 2

noise Variance of the time-varying noise input
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