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a b s t r a c t 

Although the neural mechanism underlying risk decision has been extensively investigated, the neural 

origination of risk attitude and probability distortion need to be further elucidated. In this study, the 

Rescorla–Wagner model with learning rates a + /a - upon gain/loss evaluates the risky outcome and forms 

the subjective values of risky options through the learning process, and the softmax function of subjec- 

tive values produces the choice probability between options. Our model demonstrates that risk attitude 

is determined by the undervaluation/overvaluation of risky outcome, the standard deviation of the sub- 

jective value, and the discrimination ability between subjective value. Our model further displays that 

overweighting/underweighting of small probabilities results from asymmetric learning rates and the dis- 

crimination ability between subjective value. These findings suggest that risk attitude and probability 

distortion share a common neural mechanism. 

© 2019 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

The risk attitude and the subjective probability are at the core

of economic models of decision making under risk which deals

with the trade-off between the higher expected reward of risky

option and the sure reward at lower risk. The trade-off can be

explicit as the subtraction of the product of the risk attitude and

the risk from the mean of reward (return-risk model) [16] , or im-

plicit as the maximization of the sum of decision outcomes’ utility

weighted by subjective probability of the outcome in prospective

theory [10] . Neural activities have been linked with the risk atti-

tude, including single neuron activity in orbitofrontal cortex (OFC)

[22] and the blood-oxygen-level-dependent (BOLD) signal in or-

bitofrontal cortex [29] , lateral prefrontal cortex [31] , anterior insula

and nucleus accumbens [12] , ventral striatum and anterior insula

[23] , dopaminergic regions and their targets [20] , [32] . It has been
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hown that the risk attitude can be changed by the manipulation

f cortical activity [3] , [9] , [11] or modulated by dopamine [26] and

erotonin [37] . One study showed that the volume of gray matter

n the right posterior parietal cortex predict the risk attitude [2] .

eanwhile, electrophysiology recording demonstrated that single

euron in OFC [33] , basal ganglia [4] and anterodorsal region of

he primate septum [19] may code the probability of reward and

he probability distortion may relate with the activity of prefrontal

ortex [30] , [34] and striatum ( [8,38] . However, the neural origina-

ion of risk attitude and the probability distortion has not been

lucidated. Here, we investigated this issue using a two-stage eval-

ation and choice framework [7] . Rescorla–Wagner model [21] , [28]

ith asymmetric learning rates upon gain and loss was applied

o form the subjective values of risky options, while the proba-

ilistic choice depended on the subjective values. The results of

ur model indicate that the risk attitude and the probability dis-

ortion share the common neural mechanism, i.e. choice based on

he subjective value learned from the experience with asymmet-

ic learning rates upon gain and loss. Furthermore, our model ex-

ibits a reasonable behavior: seeking small risk but avoiding large
isk. 

under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.neucom.2019.09.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.09.021&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:wangdh@bnu.edu.cn
https://doi.org/10.1016/j.neucom.2019.09.021
http://creativecommons.org/licenses/by/4.0/


H. You, M. Zhang and D.-H. Wang / Neurocomputing 375 (2020) 32–42 33 

Fig. 1. Distribution of the normalized subjective value. (A) α+ > α− and p = 0 . 5 ; (B) α+ < α− and p = 0 . 5 ; (C) α+ = α− and p = 0 . 5 ; (D) α+ > α− and p = 0 . 3 ; (E) α+ < α−
and p = 0 . 3 ; (F) α+ = α− and p = 0 . 3 . The normalized subjective value is obtained by subtraction of R − from subjective value and then divided by R + − R − . 
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. Results 

.1. Valuation process implemented as Rescorla–Wagner model with 

earning rates upon gain and loss 

The valuation process is the first stage of risky decision. Based

n the experience, subject learns the risky option’s subjective value

hich can be expressed in physical units of the reference reward

t points of equal preference or physical amount of safe reward at

hoice indifference [39] . If the outcome R i of ith option deviates

rom the subjective value V i , the subjective value will be updated

ccording to Rescorla–Wagner model: 

 i,t = V i,t−1 + α( R i,t − V i,t−1 ) (1) 

It has been shown that dopaminergic system and lateral habe-

ula involved valuation process. On the one hand, dopaminergic

eurons have a peak response to unexpected reward and a small

ip response to unexpected loss [24] ; on the other hand, some

eurons in lateral habenula have a peak response to unexpected

oss and a small dip response to unexpected reward [17] . The lat-

ral habenula neurons project to serotonergic neurons in dorsal

aphe nucleus and induce a neuromodulation different from that of

opamine [36] . Besides the separation of VTA and LHb, long-term

otentiation(LTP) and long-term depotentiation(LTD) could result

n an experience-dependent asymmetry effect on input [18] . There-

ore, we split the learning process into two parts, one for the situa-

ion that outcome is larger than previous subjective value and one

or the situation that outcome is smaller than previous subjective

alue. Thus, the update rule of subjective value can be rewritten

s: 

 i,t = V i,t−1 + 

{
α+ ( R i,t − V i,t−1 ) i f R i,t > V i,t−1 

α−( R i,t − V i,t−1 ) i f R i,t < V i,t−1 

(2) 
here α+ is the learning rate if the outcome is larger than previ-

us subjective value and α− is the learning rate if the outcome is

maller than previous subjective value. If α+ = α−, our update rule

ill be reduced to the original version of Rescorla–Wagner model. 

We first explored features of the valuation process with sep-

rate learning rates α+ and α− given stochastic outcome for one

isky option. For clarity, we considered one binary stochastic out-

ome, i.e., a larger reward R + at probability p and a smaller reward

 − at probability 1 − p. The distribution of the subjective value of

his risky option follows a dynamic: 

 t ( V ) = p P t+1 ( α+ R + + ( 1 − α+ ) V ) + ( 1 − p ) P t+1 

× ( α−R − + ( 1 − α−) V ) (3) 

here P t ( V ) is the probability that subjective value equals to V

t time t . The steady distribution of subjective value can be ob-

ained if we let P t (V ) = P t+1 (V ) . The results in Fig. 1 demonstrate

hat: (1) the distribution of subjective value skews toward larger

eward of the outcome given α+ > α−, which implies that the

ean of the subjective value is larger than the average of the ac-

ual reward ( Fig. 1 A and 1 D); (2) the distribution of the subjective

alue skews toward smaller reward of the outcome given α+ < α−,

hich means the average of the subjective value is smaller than

he mean of the actual reward ( Fig. 1 B and 1 E); (3) the distribution

s smooth given smaller learning rate and non-smooth given larger

earning rate; (4) the distribution is narrow given small learning

ate but broad given large learning rate, indicating the standard

eviation of subjective value, called as subjective risk (SR) in this

tudy, increases with the learning rate ( Fig. 1 C). The mean of the

ubjective value (EV) can be worked out as: 

EV = 

α+ R + p + α−R −( 1 − p ) 

α+ p + α−( 1 − p ) 
(4) 
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Fig. 2. The effects of learning rates on the subjective risk. (A) The subjective risk normalized by R + − R − as function of probability of receiving reward R + . (B) The ratio of 

subjective risk over objective risk ( R + − R −) 
√ 

p( 1 − p ) as function of probability of receiving reward R + . (C) The subjective gamma ratio. 
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If α+ = α−, EV is identical to the real outcome, i.e. EV = R + p +
R −( 1 − p ) , suggesting a faithful perception on the outcome of risky

option. Otherwise, EV > R + p + R −( 1 − p ) giv en α+ > α− or EV <

R + p + R −( 1 − p ) given α+ < α−, indicating an overestimation or

underestimation of the outcome of risky option. This is consistent

with the distribution of subjective value shown in Fig. 1 . 

SR can also be worked out as: 

SR = 

α+ α−( R + − R −) 

α+ p + α−( 1 − p ) 

√ 

p ( 1 − p ) (
2 α+ − α2 + 

)
p + 

(
2 α− − α2 −

)
( 1 − p ) 

(5)

When α+ = α− = α, we obtained SR for the original Rescorla–

Wagner model: SR = ( R + − R −) 

√ 

αp( 1 −p ) 
2 −α , which is a symmetric

function of probability p and reach its maximum at p = 0 . 5 . How-

ever, the peak of SR skews toward p = 0 given α+ > α− or skews

toward p = 1 given α+ < α−( Fig. 2 A). To further clarify the ef-

fect of learning rates on SR, we calculate the ratio of SR over

the standard deviation of the outcome, i.e., objective risk (OR):

OR = ( R + − R −) 
√ 

p( 1 − p ) . We find that the ratio is a decreasing

function of probability p given α+ > α−, but an increasing func-

tion of probability p given α+ < α− ( Fig. 2 B). Therefore, if α+ > α−,

the subject risk overestimates the risk of the options with lower

rewarding probability but underestimates the risk of the options

with higher rewarding probability. At the same time, if α+ < α−,

the subject risk underestimates the risk of the options with lower

rewarding probability but overestimates the risk of the options

with higher rewarding probability. 

In traditional financial market, gamma ratio of excess return of

risky assets to the standard deviation of the return is often used to

make decision on the adjustment of portfolios [25] . Higher gamma

ratio indicates a larger excess return per unit of risk or better per-

formance of manager. In this study, to measure how much ex-

cessive subjective value per SR, we defined a subjective gamma

ratio: γ = 

E V −E R 
SR , where ER is the average of the actual reward

of risky option. Fig. 2 C shows the subjective gamma ratio over

probability receiving reward. Given α+ > α−, the subjective gamma

is positive and the peak of subjective gamma is larger than 0.5,
ndicating that subjects overestimate the real reward and are sen-

itive to the reward at larger probability. Given α+ < α−, the sub-

ective gamma is negative and reaches its minimum given a prob-

bility small than 0.5, suggesting that subjects underestimate the

eal reward and more sensitive to the reward at small probability. 

.2. Probabilistic choice of the risky option based on subjective value 

The risky decision tasks in neuroscience study often include

wo alternative options, for example option R and option L. The

hoice probability depends on the difference between divisively

ormalized subjective values of options [13] : 

p R = 

[ 
1 + e 

−λ
V R −V L 

V R + V L + θ
] −1 

(6)

here p R is the probability choosing the option R, V R and V L are

he subjective values of option R and L. λ is the sensitivity of value

iscrimination. Larger λ leads to bigger difference between proba-

ilities choosing option R and that of option L given fixed subjec-

ive values of options. The divisive normalization parameter θ re-

ects the homeostasis/wealth of subject. Larger θ leads to a poorer

iscrimination between perceived values of options. 

.3. Behavior of two-stage model on risky task with fixed mean and 

ariant coefficient of variance 

McCoy and Platt [15] let monkey chose one option with cer-

ain reward or one risky option with random reward by saccade.

he outcome of risky option is either smaller or larger reward at

alf-to-half chance and the mean of reward equals to outcome of

ertain option 150. The outcome of risky option has six levels of

oefficient of variance (CV: the ratio of standard deviation over

he mean): 0.0 6 67, 0.1,0.167,0.333,0.5 and 0.667. Their experiments

howed that monkeys chose the risky option at higher probabil-

ty given larger CV, indicating the risk seeking behavior. Particu-

arly, probability of choosing the risky option over previous reward

xhibits as a check marker, indicating that gain and loss from the

isky option has asymmetric effects on the consequent choice. Here
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Fig. 3. The risk-seeking behavior captured by two-stage model. (A) The probability of risky choice over previous reward shows an asymmetric check marker. (B) The probabil- 

ity of risk choice as an increasing function of risk. (C) The mean of subjective value of the risky option is an increasing function of risk. (D) The subjective risk is an increasing 

function of risk. (E) The subjective value of risky option varies with the simulation trials in one session. The parameters are chosen as: α+ = 0 . 8 , α− = 0 . 15 , θ = 300 , λ = 15 . 

The green lines denote one session while blue line denotes average over sessions. 
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e simulated this task using our model described as Eqs. (2) and

6) . We carried out the simulation with 30 sessions and 30 0 0 trials

er session for each risk level. 

Our two-stage model captures the risk seeking behavior of

onkey observed in McCoy and Platt’s experiments ( Fig. 3 ). First,

he probability of risky choice decreases with the previous reward

hen the previous reward is smaller than the certain reward, but

he probability of risky option increases with the previous reward

f the previous reward is larger than the certain reward. Thus, the

lot consists of one left and right branch and the exhibits an asym-

etric effect on the probability of choosing risky option in the next

rial as shown in McCoy and Platt’s experiments ( Fig. 3 A). Actu-

lly, when the previous reward is smaller than the certain reward,

he previous reward should be R − of one risky option and the

maller the previous reward means the larger CV of the risky op-

ion. Therefore, the decrease of probability of risky choice with the

ncrease of R − means a risk-seeking behavior. Second, the proba-

ility of choosing risky option increases along with the increasing

f risk ( Fig. 3 B). Third, the subjective value of risky option fluc-

uates given a fixed level of risk ( Fig. 3 E), but the average of the

ubjective value linearly increases with the risk ( Fig. 3 C). Fourth,

R also linearly increases with the risk ( Fig. 3 D). The results in

ig. 3 C are consistent with our formula for the mean of subjec-

ive value and3D are consistent with our formula for subjective

isk. 
Besides the risk-seeking behavior, the model exhibits rich reper-

oires of risk behaviors. 1) Risk-avoiding behavior (data are not

hown). If EV of risky option is smaller than the reward of cer-

ain option due to α+ < α−, or even EV of risky option equals to

he reward of certain option but with large SR, the model exhibits

isk-avoiding behavior, i.e., the probability choosing risky option

ecreases with the increase of CV. 2) Risk-neutral behavior (data

re not shown). If SR of risky option is small and EV of risky op-

ion equals to the outcome of certain option due to α+ = α−, the

odel exhibits a risk-neutral behavior, i.e., risky option and certain

ption was chosen at half-half chance level. 3) Seeking small risk

ut avoiding large risk ( Fig. 4 ). We simulate the same task using

arameters α+ = 0 . 8 , α− = 0 . 35 , θ = 300 , λ = 15 . We find that the

robability of risky option slightly increases with the previous re-

ard when the previous reward is smaller than the certain reward,

ut sharply increases with the previous reward when the previous

eward is larger than the certain reward ( Fig. 4 A). Given a larger CV

f risky option, once the outcome is smaller reward R −, the subjec-

ive value has a bigger drop and could be much smaller than the

ertain value ( Fig. 4 E), leading to lower probability to choose the

isky option again. Given a smaller CV of risky option, the subjec-

ive value has a smaller drop even the outcome is R − and the sub-

ective value is close to the certain value, resulting a higher prob-

bility to choose the risky option. In brief word, the subject seeks

 small risk but avoid large risk. EV of risky option increases with
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Fig. 4. Seeking small risk but avoiding large risk. (A) The probability of risky choice over previous reward. (B) The probability of risk choice as an increasing function of risk. 

(C) The mean of subjective value of risky option is an increasing function of risk. (D) The subjective risk is an increasing function of risk. (E) The subjective value of risky 

option varies with the simulation trials in one session. The parameters are chosen as: α+ = 0 . 8 , α− = 0 . 35 , θ = 300 , λ = 15 . The green lines denote one session while blue 

line denotes average over sessions. 
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the risk due to α+ > α−( Fig. 4 C). SR also increases with the risk

( Fig. 4 D) and the slope is larger than that in Fig. 3 D. The raster

plots of SV in Fig. 4 D is sparser than that in Fig. 3 D given large

CV, which is consistent with SR. Because of the dynamics of the

subjective value of risky option, the probability choosing risky op-

tion increases given small risk but decreases with the further in-

creasing of risk ( Fig. 4 B). This kind of seeking small risk but avoid-

ing large risk behavior is reasonable and quite interesting, but this

phenomenon has not been studied in previous researches. 

2.4. Behavior of two-stage model on risky tasks with variant mean 

but fixed coefficient of variance 

Yamada et al. [35] investigated the risk attitude of well-trained

monkey. The experiment includes four conditions. Each condition

has one certain option and one risky option which offers five dif-

ferent risky rewards: zero or nonzero at half-to-half chance and

the average magnitude of risky reward ranges from smaller to

larger than that of certain option. The magnitude of reward offered

by certain option is 60, 120, 180, and 240 for different condition,

respectively. Yamada et al. fitted the data from four conditions as

whole using choice probability p R = [ 1 + e −β( E u R −E u C ) ] −1 based on

expected utility function E u R = p v α (where p is the probability of

obtaining the offered reward, v is the magnitude of the offered re-

ward). They found that two well-trained monkeys are risk avoid-

ing, i.e., the parameter of utility function α < 1. 

In this study, two-stage model is used to simulate the tasks

in Yamada et al. [35] . The sensitivity of choice and wealth/thirst

parameters are set as λ = 20 , θ = 240 but the learning rates are

varied. The simulated data are shown as dots in Fig. 5 . The simu-

lated data are fitted to choose probability p = [ 1 + e −β( E u R −E u C ) ] −1 

R 
nd utility function E u R = p v α . The two-stage model exhibits rich

isky behavior as shown in Fig. 5 . First, the model exhibits

isk-avoiding behavior that has been observed in Yamada et al.

35] ( Fig. 5 A). The subjective value of the risky option underes-

imates the actual reward of risky option if α+ < α−, as the re-

ult, the probability to chose the risky option will be attenuated.

o compensate this attenuation, the parameter of utility function

ust be smaller than one during the data fitting, indicating risk

voiding. In the present study, the learning rates are chosen as

+ = 0 . 09 , α− = 0 . 078 , which means that the average of the sub-

ective value overestimates the actual reward of the risky option.

ut, the large fluctuation of the subjective value increases the pos-

ibility that instantaneous subjective value is much smaller than

he certain reward and cannot be updated. The consequence is to

ower the probability of choosing risky option, leading to a risk

voiding behavior ( Fig. 5 A). 

Second, the model also can exhibit risk seeking behavior as ob-

erved in McCoy and Platt [15] ( Fig. 5 B). On the one hand, the

odel overestimates the value of the risky option due to learn-

ng rates α+ > α−( α+ = 0 . 09 , α− = 0 . 058 ). On the other hand, the

R of risky option is comparatively small ( Fig. 5 B2 and B3) and

he subjective value will not be trapped into big drop of the

ubjective value. As the result, the probability to choose the risky

ption was increased. To meet the incremental probability choos-

ng risky option, the parameter of utility function should be larger

han one during the data fitting, which implies a risk-seeking be-

avior. 

Third, the model predicts a new type of risk attitude: risk

witching (i.e. seeking the small risk but avoiding larger risk)

 Fig. 5 C). If the standard deviation of the subjective value is small

nd the average of the subjective value is larger than that of cer-
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Fig. 5. Simulated risk behavior on tasks with fixed CV but variant average reward. The sensitivity and wealth/thirst parameters are set as: λ = 20 , θ = 240 . The learning 

rates are set as α+ = 0 . 09 , α− = 0 . 078 in (A), α+ = 0 . 09 , α− = 0 . 058 in (B), and α+ = 0 . 09 , α− = 0 . 068 in (C). The dots in figures are simulated data and the lines are fitted 

choice probability based one expected utility function. The color denotes the magnitude of certain reward, red for 60, magenta for 120, green for 180, and blue for 240. The 

top panels show the fitted choice function for each condition with different learning rates. Middle panels show the average of subjective value of each risky option. Bottom 

panels show the subjective risk of each risky option. (A) Risk-avoiding behavior. The utility function parameters α < 1 for all conditions (B) Risk-seeking behavior. The utility 

function parameters α > 1 for all conditions. (C) Risk-switching behavior: seeking small risk but avoiding large risk. The utility function parameter changes from α > 1 to 

α < 1 along with the increase of the risk. 
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ain option, the risky option is more likely to be chosen. However,

f the standard deviation of the subjective value is large, even the

verage of the subjective value is larger than that of actual re-

ard, the certain option is more likely to be chosen in void the

ig loss due to the larger deviation of risky option (see Fig. 5 A3,

 B3, and 5 C3). To make this clear, we calculate subjective gamma

atio for each risky option under four conditions. Although subjec-

ive gamma ratio for each risky option is fluctuating, the subjective

amma ratio can be clustered into three groups and each group of

atios corresponds to one kind of risk attitude. The risk avoiding

ehavior has a small ratio, while the risk seeking behavior has a

ig ratio. The subjective gamma ratio for risk switching behavior

alls between risk avoiding and risk seeking behavior ( Fig. 6 A). The

verage of subjective gamma ratio over four conditions shown in

ig. 6 B clearly show a positive relation between γ and α in utility

unction. At the same time, the γ ratio has not significant differ-

nce within same risk attitude but has significant difference be-

ween different risk attitude ( Fig. 6 C). 

.5. Probability distortion shown by two-stage model on choice 

etween two gambles 

Human subjects may distort the probability when they face the

isky options. Hsu et al. [8] has designed one task to investigate

he neural correlates of probability distortion. In their task, human

ubjects were requested to make a choice between two gambles

 p , x ) and ( p , x ), where ( p , x ) denotes gamble i providing re-
1 1 2 2 i i 
ard x i at probability p i . Hsu et al. assumed that subjects’ utility

unction as U(x ) = x αPD , and the first gamble is chosen at prob-

bility p = [ 1 + e −λ( π( p 1 ) U( x 1 ) −π( p 2 ) U( x 2 ) ) ] −1 with Prelec weighting

unction: π(p) = 1 / exp [ ( −lnp ) ρ ] . They found that some of human

ubject overweight small probability and underweight large proba-

ility ( ρ < 1) while some human subjects underweight small prob-

bility and overweight large probability ( ρ > 1). They also demon-

trated the relation between neural activities in the striatum dur-

ng valuation of monetary gambles with the nonlinearity of proba-

ility predicted by prospect theory. However, the origination of the

onlinearity of probability has not been revealed yet. Here we used

wo-stage model to perform the tasks used in Hsu et al. [8] and fit-

ed the simulated choice data to identical model they used. Three

ypes of learning rates are chosen during the simulation: A) α+ =
 . 2 , α− = 0 . 3 ; B) α+ = 0 . 01 , α− = 0 . 01 ; and C) α+ = 0 . 1 , α− =
 . 02 . The average and the standard deviation of the subjective

alue of each gamble can be worked out according to formula:

V = 

α+ xp 
α+ p+ α−( 1 −p ) 

and SR = 

α+ α−x 
α+ p+ α−( 1 −p ) 

√ 

p( 1 −p ) 

( 2 α+ −α2 + ) p+( 2 α−−α2 −)( 1 −p ) 

ased on the probability p and reward x . Because of learning rates

nd the probability to receive the reward, the average of subjective

alue for gambles in Fig. 7 B ( α+ = α− = 0 . 01 ) is smaller than that

n Fig. 7 C ( α+ = 0 . 01 , α− = 0 . 02 ) but larger than that in Fig. 7 A

 α+ = 0 . 2 , α− = 0 . 3 ), the SR in Fig. 7 C is larger than that in Fig. 7 B

ut smaller than that in Fig. 7 A. 

The simulated subjective values of gambles in all tasks shown

n the top two rows of Fig. 8 are consistent with the theoretical

esults in Fig. 7 . The average of subjective value of ( p , x ) almost
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Fig. 6. Subjective gamma ratio and risk attitude. (A) Gamma ratio for each risky option. Circles, stars, and diamonds denote risk seeking, risk avoiding and risk switching 

attitude, respectively. Color denotes the magnitude of certain reward: red for 60, matagna for 120, green for 180, and blue for 240, respectively. (B) Gamma ratio as a function 

of α of utility function. (C) Gamma ratio within same risk attitude and between different risk attitude. 

Fig. 7. Subjective value of each gamble. (A) α+ = 0 . 2 , α− = 0 . 3 ;(B) α+ = 0 . 01 , α− = 0 . 01 ; (C) α+ = 0 . 1 , α− = 0 . 02 . Red for gamble ( p 1 , x 1 ) and blue for gamble ( p 2 , x 2 ), dots 

denote the average of subjective value and bars denote the subjective risk. 
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Fig. 8. Weighting of probability inferred from simulated choices. (A) Overweighting small probability but underweighting large probability. (B) Linear weighting of probability. 

(C) Underweighting small probability but overweight large probability. Black line is weighting function and red line is diagonal line. ρ is parameter of Prelec function 

π(p) = 1 / exp [ ( −lnp ) 
ρ

] , αPD is parameter of utility function used by Hsu et al. [8] , αEU is parameter of utility function in expected utility theory. The first and second 

row show the subjective value of gamble 1 and gamble 2, respectively. The third row shows the probability to choose gamble 1. The fourth row shows the weighting of 

probability. 
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he same as that of ( p 2 , x 2 ) ( Fig. 8 ) and gamble ( p 1 , x 1 ) has a

arger deviation given p 1 < p 2 . However, the average of subjective

alue of ( p 1 , x 1 ) is larger than that of ( p 2 , x 2 ) and the deviation

f subjective value of ( p 1 , x 1 ) is smaller than that of gamble ( p 2 ,

 2 ) given p 1 > p 2 . As consequences, the gamble ( p 1 , x 1 ) was chosen

ore frequently than gamble ( p 2 , x 2 ) given p 1 < p 2 and the gam-

le ( p 2 , x 2 ) was chosen more frequently than gamble ( p 1 , x 1 ) given

 1 > p 2 as shown in Fig. 8 A2. In Fig. 8 B, the average of subjective

alue of gamble ( p 1 , x 1 ) has no big difference with that of gam-

le ( p 2 , x 2 ). The gamble ( p 1 , x 1 ) and ( p 2 , x 2 ) are almost equally

hosen. In Fig. 8 C, the average of subjective value of gamble ( p 1 ,

 1 ) is larger than that of gamble ( p 2 , x 2 ) and the deviation of

ubjective value of gamble ( p 1 , x 1 ) is small given p 1 < p 2 . The

verage of subjective value of gamble ( p 1 , x 1 ) is smaller than

hat of gamble ( p 2 , x 2 ) and the deviation of subjective value of

amble ( p 1 , x 1 ) is smaller than that of gamble ( p 2 , x 2 ) given

 1 > p 2 . As results, the gamble ( p 1 , x 1 ) was chosen more fre-

uently than gamble ( p 2 , x 2 ) given p 1 > p 2 and the gamble ( p 2 ,

 2 ) was chosen more frequently than gamble ( p 1 , x 1 ) given p 1 < p 2 
 Fig. 8 C). 
The simulated choice probabilities were fitted to the model

p = [ 1 + e −λ( π( p 1 ) U( x 1 ) −π( p 2 ) U( x 2 ) ) ] −1 with utility function U(x ) =
 

αPD and weighting function π(p) = 1 / exp [ ( −lnp ) ρ ] and the fit-

ed weighting functions are shown in the bottom row of Fig. 8 .

ur model demonstrates three types of probability distortion. The

mall probability is over weighted and large probability is under-

eighted with learning rates α+ = 0 . 2 , α− = 0 . 3 in Fig. 8 A4; the

mall probability is underweighted but large probability is over

eighted with learning rates α+ = 0 . 1 , α− = 0 . 02 in Fig. 8 C4; and

he probability can be linear weighted given small and symmetric

earning rates α+ = 0 . 01 , α− = 0 . 01 in Fig. 8 B4. 

Although the risk attitude of subjects has not been reported in

su et al. [8] , these human subjects should have their own risk

ttitude. Here, we fitted the simulated choices probability to

he expected utility theory: p = [ 1 + e −λ( p 1 U ( x 1 ) −p 2 U ( x 2 ) ) ] −1 with

(x ) = x αEU . The results shown in Fig. 8 demonstrate that risk

voiding subjects may overweight small probability but under-

eight large probability since αEU < 1 and ρ < 1 in Fig. 8 A3. The

isk seeking subjects underweight small probability and over-

eight large probability since αEU > 1 and ρ > 1 in Fig. 8 C4. Those
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Fig. 9. Weighting of probability in simulated PEST task. (A1). The time course of the sure reward in an example trial of certainty equivalent searching task given α+ = 

0 . 05 , α− = 0 . 02 , λ = 4 , and β = 0 . (A2) The weighting function of probability underweighting small probability and overweighting large probability. (B1) The time course of 

the sure reward in an example trial of certainty equivalent searching task given α+ = 0 . 02 , α− = 0 . 04 , λ = 4 , and β = 0 . (B2) The weighting function overweighting small 

probability and underweighting large probability. 
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subjects weighting probability linearly show a risk avoiding behav-

ior ( αEU < 1 and ρ ≈ 1) in Fig. 8 B4. 

2.6. Probability distortion in certainty equivalent searching task using

parameter estimation by sequential testing (PEST) 

Probability distortion has been revealed in Macaque monkeys

[27] as well as in human subjects. Monkeys are requested to make

a choice between a risky option and a sure option. In one block

of experiment, the risky option provides a reward (RR = 0.5) at a

probability (0.1,0.25,0.4,0.6,0.75, and 0.9), while the reward of sure

option will be adjusted using an adaptive psychometric measure-

ment technique (Parameter Estimation by Sequential Testing, PEST)

[14] . If the risky option was chosen, the reward of sure option was

increased by ɛ on the next step. If the sure option was chosen, the

reward of sure option was decreased by ɛ on the next step. There

is an upper boundary and lower boundary of the reward of sure

option in avoid the explosion in the simulation. Every time two

consecutive choices were the same, ɛ was increased by 20%, and

every time the choice was switched from one option to another, ɛ
was increased by 20%. Once ɛ is smaller than a threshold, the sim-

ulation was stopped and the reward of sure option is the certainty

equivalent of the risky option. Fig. 9 shows the time course of the

simulated reward of sure option. It is easy to see that sure reward

fluctuates in early stage of simulation and finally approaches to

a stable value (certainty equivalent: CE). The parameters of non-

linear weighting can be obtained by fitting the simulated CE to

the formula C E α = π(p) R R α with π(p) = 1 / exp [ ( −lnp ) ρ ] . Fig. 9 A

show the results given α+ = 0 . 05 , α− = 0 . 02 , λ = 4 , and β = 0 .

The certainty equivalents were obtained after hundreds simulation

steps, and the average of CEs over 100 trials simulation are 0.0942,

0.2296, 0.3131,0.3777,0.4148, and 0.4587 for reward of risky op-
ion at probability 0.1,0.25,0.4,0.6,0.75, and 0.9 respectively. These

Es are larger than the objective average reward from risky op-

ion owing to α+ > α−. The parameter for weighting function is

= 1 . 13 ± 0 . 24 , indicating underweighting small probability and

verweighting large probability ( Fig. 9 A2). The parameter for utility

unction is α = 1 . 76 ± 0 . 25 , implying risk seeking behavior. Fig. 9 B

how the results given α+ = 0 . 02 , α− = 0 . 04 , λ = 4 , and β = 0 . The

verage CEs are 0.0255, 0.0724, 0.1304, 0.2161, 0.2944, and 0.4350

or reward at probability 0.1,0.25,0.4,0.6,0.75, and 0.9 respectively.

hese CEs are smaller than objective average of reward from risky

ption due to α+ < α−. The parameter for utility function is α =
 . 68 ± 0 . 07 , indicating a risk avoiding behavior. The parameter for

eighting function is ρ = 0 . 90 ± 0 . 12 , suggesting an overweight-

ng of small probability and underweighting of large probability.

s brief summary, by varying the learning rates, our model can re-

roduce the observations in [27] and predicts a different type of

robability distortion, indicating that learning rates play important

oles in the probability perceiving process. 

. Discussion 

Risk attitude and probability distortion play central roles in the

ecision making under risky circumstance. In this study, we in-

estigated their neural basis and found that the valuation pro-

ess through reinforcement learning from experience is the com-

on neural basis of the risk attitude and the probability distor-

ion. The learning rates in the reinforcement learning determine

he average of the subjective value and the subjective gamma ra-

io ( γ = 

E V −E R 
SDV ). If the learning rate for gains a + is smaller than

he learning rate for losses a −, the average of subjective value is

maller than that of real reward of risky option and the subjective

amma ratio is smaller than zero, leading to a risk avoiding behav-
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or. When a − < a + , the average of subjective value is larger than

hat of real reward of risky option and the subjective gamma ra-

io is positive. On the one hand, if the subjective gamma ratio is

mall, the standard deviation of the subjective value is large com-

aring to the surplus of the subjective value over the real reward,

eading to a risk avoiding behavior ( Fig. 6 ); on the other hand, if

he subjective gamma ratio is large, the standard deviation of the

ubjective value is small comparing to the surplus of the subjective

alue over the real reward, causing a risk seeking behavior. When

he subjective gamma ratio is not large enough, the model exhibits

 new type of risk behavior: seeking small risk but avoiding large

isk. 

The learning rates in reinforcement learning determine the SR.

f a − < a + , the SR of risky option receiving reward at small proba-

ility will be augmented and the subjective gamma ratio peaks at

arge probability ( Fig. 2 ). As the result, the gamble with large re-

arding probability will be chosen more frequently than the gam-

le with small reward probability in the task designed by Hsu

t al. [8] , leading to underweighting of small probability and over-

eighting of large probability. Actually, this type of probability

istortion has long been observed in one comparative study that

onkeys increase the probability of highly probable choice and de-

rease the probability of low one [1] . If a − > a + , the SR of risky

ption receiving at large probability is augmented and the subjec-

ive gamma ratio has a trough at small probability ( Fig. 2 ). The

onsequence is that the gamble with small rewarding probability

ill be chosen more frequently than the gamble with large reward

robability in the task designed, implying overweighting of small

robability and underweighting large probability. These results im-

ly that the enhancement of VTA neurons leads subjects shift their

isk attitude from risk avoiding to risk seeking, while the enhance-

ent of LHb activity will lead subjects shift their risk attitude from

isk seeking to risk avoiding. 

The traditional reinforcement learning model, which can be

ooked as our model with symmetric learning rates a − = a + , can

nly produce the risk avoiding behavior and cannot explain the

isk seeking behavior as in McCoy 2005. Risk sensitive tempo-

al difference model has been proposed to explore risk sensitivity

5] , [6] , [20] and stated that a − > a + leads to risk avoiding behav-

or and a − < a + leads to risk seeking behavior. However, our study

ound that not only a − < a + but also a large subjective gamma ra-

io can result in risk seeking behavior, even a − < a + can lead to

 larger average subjective value, the larger SR can cancel out the

urplus of subjective value over real reward and lead to risk avoid-

ng behavior ( Fig. 6 ). 

We obtained above conclusions based on simulations with good

iscrimination between values due to large sensitivity parameter. If

he discrimination ability on values is impaired by decreasing the

ensitivity parameter, the choice will more frequently switch be-

ween two options. Considering an extreme condition that λ = 0 ,

ny one of the options will be chosen by half chance. Thus, the

ertainty equivalent in PEST task converges to a number which is

ndependent of reward receiving probability of risky option, lead-

ng to an overweighting of small probability and underweighting

f large probability. 
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