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Reconstructing propagation networks with natural
diversity and identifying hidden sources
Zhesi Shen1, Wen-Xu Wang1,2, Ying Fan1, Zengru Di1 & Ying-Cheng Lai2,3

Our ability to uncover complex network structure and dynamics from data is fundamental to

understanding and controlling collective dynamics in complex systems. Despite recent

progress in this area, reconstructing networks with stochastic dynamical processes from

limited time series remains to be an outstanding problem. Here we develop a framework

based on compressed sensing to reconstruct complex networks on which stochastic

spreading dynamics take place. We apply the methodology to a large number of model and

real networks, finding that a full reconstruction of inhomogeneous interactions can be

achieved from small amounts of polarized (binary) data, a virtue of compressed sensing.

Further, we demonstrate that a hidden source that triggers the spreading process but is

externally inaccessible can be ascertained and located with high confidence in the absence of

direct routes of propagation from it. Our approach thus establishes a paradigm for tracing and

controlling epidemic invasion and information diffusion in complex networked systems.
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O
ne of the outstanding problems in interdisciplinary
science is nonlinear and complex systems identification,
prediction and control. Given a complex dynamical

system, the various types of dynamical processes are of great
interest. The ultimate goal in the study of complex systems is to
devise practically implementable strategies to control the
collective dynamics. A great challenge is that the network
structure and the nodal dynamics are often unknown but only
limited measured time series are available. To control the system
dynamics, it is imperative to be able to map out the system details
from data. Reconstructing complex network structure and
dynamics from data, the inverse problem, has thus become a
central issue in contemporary network science and engineering1–8.
There are broad applications of the solutions of the network
reconstruction problem, due to the ubiquity of complex interacting
patterns arising from many systems in a variety of disciplines9–12.

An important class of collective dynamics is epidemic
spreading and information diffusion in the human society or
on computer networks13–20. The past decades have witnessed
severe epidemic outbreaks at the global scale due to the mutation
of virus, including SARS21,22, H5N1 (refs 23,24), H1N1
(refs 25,26) and the recent invasion of H7N9 in eastern
China27,28. Our goal is to reconstruct the networks hosting the
spreading process and identify the source of spreading using
limited measurements. This is especially challenging due to (1)
difficulty in predicting and monitoring mutations of deadly virus
and (2) absence of epidemic threshold in heterogeneous
networks29–32. Another example is rumour propagation in the
online virtual communities, which can cause financial loss or even
social instabilities, such as the 2011 irrational and panicked
acquisition of salt in southeast Asian countries caused by the
nuclear leak in Japan. In this regard, identifying the propagation
network for controlling the dynamics is of great interest. Another
significant challenge in reconstructing a spreading network lies in
the nature of the available time series: they are polarized, despite
stochastic spreading among nodes. Indeed, the link pattern and
the probability of infection are encrypted in the binary status of
individuals, infected or not, analogous to the collapse of wave
function to one associated with some discrete quantum state
induced by observation in quantum mechanics.

There have been recent efforts in addressing the inverse
problem of some special types of complex propagation net-
works33,34. In particular, for diffusion process originated from a
single source, the routes of diffusion from the source constitute a
tree-like structure. If information about the early stage of the
spreading dynamics is available, it would be feasible to decode all
branches that reveal the connections from the source to its
neighbours, and then to their neighbours and so on. Taking into
account the time delays in the diffusion process enables a
straightforward inference of the source in a complex network
through enumerating all possible hierarchical trees33,34. However,
if no immediate information about the diffusion is available,
the tree-structure-based inference method is inapplicable, and the
problem of network reconstruction and locating the source
becomes extremely challenging, hindering control of diffusion
and delivery of immunization. The loss of knowledge about the
source is common in real situations. For example, passengers on
an international flight can carry a highly contagious disease,
making certain airports the immediate neighbours of the hidden
source, which would be difficult to trace. In another example, the
source could be migratory birds coming from other countries or
continents. A general data-driven approach, applicable in such
scenarios, is still lacking.

In this paper, we develop a general theoretical framework to
reconstruct complex propagation networks from time series
based on the compressed sensing theory (CST)35–40, a novel

optimization paradigm for sparse-signal reconstruction with
broad applications in signal and image processing. Owing to
the striking characteristics of CST such as the extremely low data
requirement and rigorous guarantee of convergence to optimal
solutions, our framework is highly efficient and accurate.
However, casting the inverse problem into the CST framework
is highly non-trivial. Although CST has been used to uncover the
nodal interaction patterns for coupled oscillator networks or
evolutionary games from time series41–43, the dynamics of
epidemic propagation is typically highly stochastic with, for
example, binary time series, rendering inapplicable the existing
CST-based formulation. Further, despite the alternative sparsity
enforcing regularizers and convex optimization used in ref. 44 to
infer networks, CST has not been applied to reconstructing
propagation networks, especially when the available time series
are binary. The main accomplishment of this work is then the
development of a scheme to implement the highly non-trivial
transformation associated with the spreading dynamics in the
paradigm of CST. Without loss of generality, we employ two
prototypical models of epidemic spreading: classic susceptible-
infected-susceptible (SIS) dynamics13 and contact processes
(CPs)45,46, on both model and real-world (empirical) networks.
Inhomogeneous infection and recovery rates as representative
characteristics of the natural diversity are incorporated into the
diffusion dynamics to better mimic the real-world situation. We
assume that only binary time series can be measured, which
characterize the status of any node, infected or susceptible, at any
time after the outbreak of the epidemic. The source that triggers
the spreading process is assumed to be externally inaccessible
(hidden). In fact, one may not even realize its existence from
available time series. Our method enables, based on relatively
small amounts of data, a full reconstruction of the epidemic
spreading network with nodal diversity and successful
identification of the immediate neighbouring nodes of the
hidden source (thereby ascertaining its existence and uniquely
specifying its connections to nodes in the network). The
framework is validated with respect to different amounts of
data generated from various combinations of the network
structures and dynamical processes. High accuracy, high
efficiency and applicability in a strongly stochastic environment
with measurement noise and missing information are the
most striking characteristics of our framework. Thus, broad
applications can be expected in addressing significant problems
such as targeted control of disease and rumour spreading.

Results
Compressed sensing. The general problem that CST addresses is
to reconstruct a vector XARN from linear measurements Y about
X in the form

Y ¼ F � X; ð1Þ

where YARM and U is an M�N matrix. The striking feature of
CS is that the number of measurements can be much less than the
number of components of the unknown vector, that is, MooN,
insofar as X is sparse and the number of non-zero components in
it is less than M. Accurate reconstruction can be achieved by
solving the following convex-optimization problem35:

min jj X jj1 subject to Y ¼ F � X; ð2Þ

where jj X jj1¼
PN

i¼1 j Xi j is the L1 norm of X and the matrix U
satisfies the restricted isometry property. Solutions to the convex
optimization are now standard35–40. (More details of the CST can
be found in Supplementary Note 1.) Our goal is to develop a
framework to cast the problem of reconstructing propagation
networks into form (1).
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Reconstruction framework. To present our framework in a
transparent manner, we first consider the relatively simple case
where there is no hidden source. Further, we assume that the
disease starts to propagate from a fraction of the infected nodes.
As we will see, based on this framework, it is feasible to locate any
hidden source based solely on time series after outbreak of
infection. The state of an arbitrary node i is denoted as Si, where

Si ¼
0; susceptible;
1; infected:

�
ð3Þ

Owing to the characteristic difference between the SIS dynamics
and CP, we treat them separately (see Methods).

For the SIS dynamics, the probability P01
i ðtÞ of an arbitrary

node i being infected by its neighbors at time t is

P01
i ðtÞ ¼ 1�ð1� liÞ

PN
j¼1;j 6¼ i

aijSjðtÞ
; ð4Þ

where li is the infection rate of i, aij stands for the elements of the
adjacency matrix (aij¼ 1 if i connects to j and aij¼ 0 otherwise),
Sj(t) is the state of node j at t, and the superscript 01 denotes the
change from susceptible state (0) to infected state (1). At the same
time, the recovery probability of i is P10

i ðtÞ ¼ di, where di is the
recovery rate of node i and the superscript 10 denotes the

transition from infected state to susceptible state. Equation (4)
can be rewritten as

ln½1�P01
i ðtÞ� ¼ lnð1� liÞ �

XN
j¼1;j 6¼ i

aijSjðtÞ: ð5Þ

If measurements at different times t¼ t1, t2, � � � , tm are available,
equation (5) can be written in the matrix form Ym� 1

¼Um� (N� 1) �X(N� 1)� 1, where Y contains ln½1� P01
i ðtÞ� at

different t, U is determined by the state Sj(t) of nodes except i,
and X comprising the links and infection rates of i is sparse for a
general network (see Methods). The main challenge here is that
the infection probabilities P01

i ðtÞ at different times are not given
directly from the time series of the nodal state.

To develop a method to estimate the probability from the
nodal states, we set a threshold D pertaining to the normalized
Hamming distance between strings composed of Sj(t) (jai) at
different t to identify a base string at t̂a and a set of strings subject
to the base. According to the law of large numbers, the probability
P01
i ð̂taÞ can be estimated by the average over the state Si(tþ 1) at

all proper time. By setting another threshold Y associated with
the normalized Hamming distance, we can identify a set of base
strings. This process finally gives rise to a set of reconstruction
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Figure 1 | Schematic illustration of building up Y and U from binary time series. (a) Fourteen snapshots of data at time instants t1� t14 of eight

nodes in a sample network, where Si is the time series of node 2 and S� i denotes the strings of other nodes at different times. The neighbourhood of

node 2 is to be reconstructed. Only the pairs 00 and 01 in the time series of Si (i¼ 2) and the corresponding S� i contain useful information about

the network, as marked by different colours. (b) As Si(tþ 1) is determined by the neighbours of i and S� i(t), we sort out Si(tþ 1) and S� i(t) in the

coloured sections of the time series in a. According to the threshold parameters D¼ 3/7 and Y¼ 3/7, we calculate the normalized Hamming

distance between each pair of strings S� i(t), finding two base strings at t̂1 ¼ t1 and t̂2 ¼ t11 with H½S� i ð̂t1Þ; S� i ð̂t2Þ�4Y. We separate the coloured

strings into two groups that are led by the two base strings, respectively. In each group, the normalized Hamming distance H½S� i ð̂taÞ; S� iðtnÞ� between
the base string and other strings is calculated and the difference from S� i ð̂taÞ in each string is marked by red. Using parameter D, in the group led by

S� i ð̂t1Þ, S� i(t5) and Si(t6) are preserved, because of H½S� i ð̂t1Þ; S� iðt5Þ�oD. In contrast, S� i(t7) and Si(t8) are disregarded because H½S� i ð̂t1Þ; S� iðt7Þ�4D.

In the group led by S� i ð̂t2Þ, due to H½S� i ð̂t2Þ; S� iðt13Þ�oD, the string is preserved. The two sets of remaining strings marked by purple and green can

be used to yield the quantities required by the reconstruction formula. (Note that different base strings are allowed to share some strings, but for simplicity,

this situation is not illustrated here. See Supplementary Note 3 for a detailed discussion.) (c) The average values hSi ð̂ta þ 1Þi and hS� i ð̂taÞi used to extract

the vector Y and the matrix U in the reconstruction formula, where hS� i ð̂t1Þi ¼ ½S� iðt1Þþ S� iðt5Þ�=2, hS� i ð̂t2Þi ¼ ½S� iðt11Þþ S� iðt13Þ�=2, hSi ð̂t1 þ 1Þi ¼
½Siðt2Þþ Siðt6Þ�=2 and hSi ð̂t2 þ 1Þi ¼ ½Siðt12Þþ Siðt14Þ�=2 based on the remaining strings marked in different colours (see Methods for more details).

CST can be used to reconstruct the neighbouring vector X of node 2 from Y and U from Y¼U .X.
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equations in the matrix form:

ln½1�hSið̂t1 þ 1Þi�
ln½1�hSið̂t2 þ 1Þi�

..

.

ln½1�hSið̂tm þ 1Þi�

2
66664

3
77775

¼

hS1ð̂t1Þi � � � hSi� 1ð̂t1Þi hSiþ 1ð̂t1Þi � � � hSN ð̂t1Þi
hS1ð̂t2Þi � � � hSi� 1ð̂t2Þi hSiþ 1ð̂t2Þi � � � hSN ð̂t2Þi

..

. ..
. ..

. ..
. ..

. ..
.

hS1ð̂tmÞi � � � hSi� 1ð̂tmÞi hSiþ 1ð̂tmÞi � � � hSN ð̂tmÞi

2
66664

3
77775

�

lnð1� liÞai1
..
.

lnð1� liÞai;i� 1

lnð1� liÞai;iþ 1

..

.

lnð1� liÞaiN

2
66666666664

3
77777777775
;

ð6Þ
where t̂1; t̂2; � � � ; t̂m correspond to the time associated with m base
strings and / �S denote the average over all satisfied t (see
Methods). The vector Ym� 1 and the matrix Um� (N� 1) can then
be obtained based solely on time series of nodal states and the
vector X(N� 1)� 1 to be reconstructed is sparse, rendering
applicable the CS framework. As a result, we can achieve exact

reconstruction of all neighbours of node i from relatively small
amounts of observation. In a similar manner the neighbouring
vectors of all other nodes can be uncovered from time series,
enabling a full reconstruction of the whole network by matching
the neighboring sets of all nodes.

For the CP dynamics, the infection probability of an arbitrary
node i is given by

P01
i ðtÞ ¼ li

XN
j¼1;j 6¼ i

aijSjðtÞ=ki; ð7Þ

where ki is the degree of the node i, and the recovery probability is
P10
i ðtÞ ¼ di (see Methods). In close analogy to the SIS dynamics,

we have

hSið̂ta þ 1Þi ’ hP01
i ð̂taÞi ¼

li
P

aijhSjð̂taÞi
ki

: ð8Þ

We then choose a series of base strings using a proper threshold
Y to establish a set of equations, expressed in the matrix form
Ym� 1¼Um� (N� 1) �X(N� 1)� 1 (see Supplementary Note 2),
where U has the same form as in equation (6), but Y and X
are given by

Y ¼ hSið̂t1 þ 1Þi; hSið̂t2 þ 1Þi; � � � ; hSið̂tm þ 1Þi
� �T

;

X ¼ li
ki
ai1; � � � ;

li
ki
ai;i� 1;

li
ki
ai;iþ 1; � � � ;

li
ki
aiN

� �T
:

ð9Þ

Our reconstruction framework based on establishing the vector Y
and the matrix U is schematically illustrated in Fig. 1. It is
noteworthy that our framework can be extended to directed
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Figure 2 | Network reconstruction performance. (a) Element values ln(1�li)aij of vector X times � 1 for different fraction nt̂ of base strings for

SIS dynamics. (b,c) Success rate (SREL and SRNC) and conflict rate (CR) of reconstruction as a function of nt̂ for SIS dynamics on Newman–Watts (NW)

small-world networks (b) and CP dynamics on Erdös–Rényi (ER) random networks (c). For the SIS dynamics, the parameters are Y¼0.25, D¼0.45 and

the infection and recovery rates li and di are randomly distributed in the ranges (0.2, 0.4) and (0.4, 0.6), respectively. For the CP dynamics, the parameters

are Y¼0.35, D¼0.45 and li and di are randomly distributed in the ranges (0.7, 0.9) and (0.2, 0.4), respectively. The network size N is 200 with average

node degree /kS¼4. The results are obtained by ensemble averaging over ten independent realizations. The success rate is determined by setting a

cut-off according to Supplementary Fig. 1a and the method described in Supplementary Note 4.
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networks in a straightforward manner due to the feature that the
neighbouring set of each node can be independently recon-
structed. For instance, the neighbouring vector X can be defined
to represent a unique link direction, for example, incoming links.
Inference of the directed links of all nodes yields the full topology
of the entire directed network.

Reconstructing networks and infection and recovery rates. To
quantify the performance of our method in terms of the number
of base strings (equations) for a variety of diffusion dynamics and
network structures, we study the success rates for existent links
(SRELs) and null connections (SRNCs), corresponding to non-
zero and zero element values in the adjacency matrix, respec-
tively. We impose the strict criterion that the network is regarded
to have been fully reconstructed if and only if both success rates
reach 100%. The sparsity of links makes it necessary to define
SREL and SRNC separately. As the reconstruction method is
implemented for each node in the network, we define SREL and
SRNC on the basis of each individual node and the two success
rates for the entire network are the respective averaged values
over all nodes. We also consider the issue of trade-off in terms of
the true positive rate (for correctly inferred links) and the false
positive rate (for incorrectly inferred links).

Here we assume that there is no hidden source and the
spreading process starts from a fraction of infected nodes, and
record the binary time series. Figure 2a shows the reconstructed
values of the components of the neighbouring vector X of all
nodes. Let nt̂ be the number of base strings normalized by the
network size N. For small values of nt̂ , for example, nt̂ ¼ 0:1, the
values of elements associated with links and that associated with
null connections (actual zeros in the adjacency matrix) overlap,
leading to ambiguities in the identification of links. In contrast,
for larger values of nt̂ , for example, nt̂ ¼ 0:4, an apparent gap
emerges between the two groups of element values, enabling us to
correctly identify all links by simply setting a cut-off within the
gap (see Supplementary Fig. 1a and Supplementary Note 4 for a
method to set the cut-off). The success rates (SREL and SRNC) as
a function of nt̂ for SIS and CP on both homogeneous and
heterogeneous networks are shown in Fig. 2b,c, where we observe
nearly perfect reconstruction of links insofar as nt̂ exceeds a
relatively small value—an advantage of compressed sensing. The
exact reconstruction is robust in the sense that a wide range of nt̂
values can yield nearly 100% success rates. Our reconstruction
method is then effective for tackling real networks in the absence
of any a priori knowledge about its topology. In particular, the
existence of a clear gap in the reconstructed vector X represents a
successful reconstruction for a real network.

Note that a network is reconstructed through the union of all
neighbourhoods, which may encounter ‘conflicts’ with respect to
the presence/absence of a link between two nodes as generated by
reconstruction centred at the two nodes. The conflicts would
reduce the accuracy in the reconstruction of the entire network.
To characterize the effects of edge conflicts, we study the
consistency of mutual assessment of the presence or absence of
link between each pair of nodes, as shown in Fig. 2b,c. We see
that inconsistency arises for small values of nt̂ but vanishes
completely when the success rates reach 100%, indicating
complete consistency among the mutual inferences of nodes
and consequently guaranteeing accurate reconstruction
of the entire network. Detailed results of success rates and
trade-off measures with respect to a variety of model and real
networks are displayed in Table 1, Supplementary Figs 2 and 3.
and Supplementary Note 5.

Although the number of base strings is relatively small
compared with the network size, we need a set of strings at
different time with respect to a base string to formulate the

mathematical framework for reconstruction. We study how the
length of time series affects the accuracy of reconstruction.
Figure 3a,b show the success rate as a function of the relative
length nt of time series for SIS and CP dynamics on both
homogeneous and heterogeneous networks, where nt is the total
length of time series from the beginning of the spreading process
divided by the network size N. The results demonstrate that even
for very small values of nt, most links can already be identified, as
reflected by the high values of the success rate shown. Figure 3c,d
show the minimum length nmin

t required to achieve at least 95%
success rate for different network sizes. For both SIS and CP
dynamics on different networks, nmin

t decreases considerably as
N is increased. This seemingly counterintuitive result is due to the
fact that different base strings can share strings at different times
to enable reconstruction. In general, as N is increased, nt̂ will
increase accordingly. However, a particular string can belong to
different base strings with respect to the threshold D, accounting
for the slight increase in the absolute length of the time series (see
Supplementary Fig. 4 and Supplementary Note 5) and the
reduction in nmin

t (see Supplementary Note 3 on the method to
choose base and subordinate strings). The dependence of the
success rate on the average node degree /kS for SIS and CP on
different networks has been investigated as well (see
Supplementary Fig. 5 and Supplementary Note 5). The results
in Figs 2 and 3, Supplementary Figs 2–5 and Table 1 demonstrate
the high accuracy and efficiency of our reconstruction method
based on small amounts of data.

In practice, noise is present and it is also common for time
series from certain nodes to be missing, and it is necessary to test
the applicability of our method in more realistic situations.
Figure 4a,b show the dependence of the success rate on the
fraction nf of states in the time series that flip due to noise for SIS
and CP dynamics on two types of networks. We observe that the
success rates are hardly affected, providing strong evidence for the
applicability of our reconstruction method. For example, even
when 25% of the nodal states flip, we can still achieve about 80%
success rates for both dynamical processes and different network
topologies. Figure 4c,d present the success rate versus the fraction
nm of unobservable nodes, the states of which are externally
inaccessible. We find that the high success rate remains mostly
unchanged as nm is increased from 0 to 25%, a somewhat
counterintuitive but striking result. The high degree of robustness
against the limit to accessing nodal states is elaborated further in
Supplementary Fig. 6 and Supplementary Note 5. We find that, in
general, missing information can affect the reconstruction of the
neighbouring vector, as reflected by the reduction of the gap
between the reconstructed values associated with actual links and
null connections. However, even for high values of nm, for
example, nm¼ 0.3, there is still a clear gap, indicating that a full
recovery of all links is achievable. We have also found that
our method is robust against inaccurately specified diffusion
processes with fluctuation in infection rates (see Supplementary
Fig. 7 and Supplementary Note 5). Taken together, the high
accuracy, efficiency and robustness against noise, missing
information and inaccurately modelling of real dynamical
processes provide strong credence for the validity and power of
our framework for binary time-series-based network
reconstruction.

Having reconstructed the network structure, we can estimate
the infection and recovery rates of individuals to uncover their
diversity in immunity. This is an essential step to implement
target vaccination strategy in a population or on a computer
network to effectively suppress/prevent the spreading of virus at
low cost, as a large body of literature indicates that knowledge
about the network structure and individual characteristics is
sufficient for controlling the spreading dynamics47–50. Here we
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offer an effective method to infer the individuals’ infection rates li
based solely on the binary time series of the nodal states after an
outbreak of contamination. (To our knowledge, there was no
prior work addressing this critical issue.) In particular, after all
links have been successfully predicted, li can be deduced from
the infection probabilities that can be approximated by the
corresponding infection frequencies (see Methods). These
probabilities depend on both li and the number of infected
neighbours. The reproduced infection rates li of individuals for
both SIS and CP dynamics on different networks are in quite
good agreement with the true values with small prediction errors
(see Supplementary Fig. 8 and Supplementary Note 6). Results
from a comprehensive error analysis are listed in Table 1, where
the uniformly high accuracy validates our method. The
inhomogeneous recovery rates di of nodes can be predicted
from the binary time series in a more straightforward way,
because di do not depend on the nodal connections (see
Supplementary Fig. 9 and Supplementary Note 6). Thus, our
framework is capable of predicting characteristics of nodal
diversity in terms of degrees, and infection and recovery rates
based solely on binary time series of nodal states.

Locating the hidden source of propagation. We assume that a
hidden source exists outside the network but there are connec-
tions between it and some nodes in the network. In practice, the
source can be modelled as a special node that is always infected.
Starting from the neighbourhood of the source, the infection
originates from the source and spreads all over the network. We
collect a set of time series of the nodal states, except the hidden
source (see Methods). The basic idea of ascertaining and locating
the hidden source is based on missing information from the

hidden source when attempting to reconstruct the network. In
particular, to reconstruct the connections belonging to the
immediate neighbourhood of the source accurately, time series
from the source are needed to generate the matrix U and the
vector Y. However, as the source is hidden, no time series from
it are available, leading to reconstruction inaccuracy and,
consequently, anomalies in the predicted link patterns of the
neighbouring nodes. It is then possible to detect the neighbour-
hood of the hidden source by identifying any abnormal connec-
tion patterns51, which can be accomplished by using different
data segments. If the inferred links of a node are stable with
respect to different data segments, the node can be deemed to
have no connection with the hidden source; otherwise, if the
result of inferring a node’s links varies significantly with respect
to different data segments, the node is likely to be connected to
the hidden source. The s.d. of the predicted results with respect to
different data segments can be used as a quantitative criterion
for the anomaly. Once the neighbouring set of the source is
determined, the source is then precisely located topologically.

Figure 5 presents an example, where a hidden source is
connected with four nodes in the network (Fig. 5a), as reflected in
the network adjacency matrix (Fig. 5b). We implement our
reconstruction framework on each accessible node by using
different sets of data in the time series. For each data set, we
predict the neighbours of all nodes and generate an adjacency
matrix. Averaging over the elements corresponding to each
location in all the reconstructed adjacency matrices, we obtain
Fig. 5c, in which each row corresponds to the mean number of
links in a node’s neighbourhood. The inferred links of the
immediate neighbours of the hidden source exhibit anomalies.
To quantify the anomalies, we calculate the structural s.d. s from

Table 1 | Performances of reconstruction and locating hidden source.

Network reconstruction Error of k LHS

SREL SRNC TPR FPR Mean Min Max TPR FPR

SIS
WS 1.0 1.0 1.0 0.0 0.008 0.0 0.042 1.0 0.001
ER 0.992 0.991 0.992 0.009 0.014 0.0 0.192 0.977 0.026
BA 0.977 0.986 0.977 0.014 0.046 0.0 1.881 0.99 0.066
prison 0.994 0.993 0.994 0.007 0.032 0.0 0.311 1.0 0.017
Santafe 0.978 0.991 0.978 0.009 0.063 0.0 1.122 1.0 0.041
netscience 0.959 0.992 0.959 0.008 0.172 0.0 2.878 0.949 0.144
NW 1.0 0.999 1.0 0.001 0.015 0.0 0.15 1.0 0.001
ZK 0.981 0.993 0.981 0.007 0.079 0.001 0.712 0.97 0.078
Polbooks 0.932 0.984 0.932 0.016 0.133 0.0 1.1875 0.732 0.234
Football 0.970 0.989 0.970 0.011 0.166 0.001 0.651 0.612 0.021
Dolphin 0.952 0.967 0.952 0.033 0.022 0.001 0.123 0.925 0.083
Leadership 0.975 0.986 0.975 0.014 0.05 0.0 0.706 0.869 0.057

CP
WS 1.0 1.0 1.0 0.0 0.009 0.0 0.048 0.936 0.068
ER 0.999 1.0 1.0 0.0 0.01 0.0 0.073 0.925 0.327
BA 0.997 1.0 1.0 0.0 0.008 0.0 0.043 0.943 0.08
Prison 0.995 0.996 0.996 0.004 0.005 0.0 0.018 0.911 0.012
Santafe 0.984 0.996 0.996 0.004 0.006 0.0 0.036 0.929 0.034
Netscience 0.996 0.999 0.996 0.001 0.007 0.0 0.166 1.0 0.050
NW 1.0 1.0 1.0 0.0 0.009 0.0 0.052 0.98 0.034
ZK 0.992 0.992 0.992 0.008 0.007 0.001 0.022 0.977 0.028
Polbooks 0.973 0.995 0.973 0.005 0.008 0.0 0.042 0.829 0.386
Football 0.995 0.997 0.995 0.003 0.006 0.0 0.028 0.517 0.015
Dolphin 0.952 0.971 0.971 0.029 0.006 0.0 0.026 0.786 0.059
Leadership 0.996 0.993 0.993 0.007 0.006 0.0 0.013 0.857 0.075

FPR, false positive rate; LHS, locating hidden source; SREL, success rates for existent link; SRNC, success rates for null connection; TPR, true positive rate.
The accuracy of network reconstruction is quantified by the success rates SREL and SRNC, as well as the trade-off measures TPR and FPR. The accuracy in determining the values of the infection rate l is
characterized by the relative mean errors, the minimum and maximum errors. The accuracy of LHS is characterized by the trade-off measures TPR and FPR. The results of network reconstruction and
error in l are obtained from 30 independent realizations. The results of LHS is obtained from ten dynamical realizations and ten configurations of the hidden source. Other parameters are the same as in
Fig. 2. For data sources, reference and network models, see Supplementary Table 1 and Supplementary Note 10.
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different data segments, where s associated with node i is defined
through the ith row in the adjacency matrix as

si ¼
1
N

XN
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
g

Xg
k¼1

ðaðkÞij �haijiÞ2
vuut ; ð10Þ

where j denotes the column, aðkÞij represents the element value in
the adjacency matrix inferred from the kth group of the data,
haiji ¼ ð1=gÞ

Pg
k¼1 a

k
ij is the mean value of aij and g is the number

of data segments. Applying equation (10) to the reconstructed
adjacency matrices gives the results in Fig. 5d, where the values of
s associated with the immediate neighbouring nodes of the
hidden source are much larger than those from others (which are
essentially zero). A cut-off value can be set in the distribution of
si to identify the immediate neighbours of the hidden source
(see Supplementary Fig. 1b and Supplementary Note 4). The
performance of locating hidden source by means of the trade-off
measures (true positive rate versus false positive rate) are
displayed in Table 1.

Discussion
We have developed a general framework to reconstruct complex
propagation networks on which epidemic spreading takes place
from binary time series. Our paradigm is based on compressed
sensing, is completely data-driven and practically significant for
controlling epidemic spreading through targeted vaccination.
Both theoretically and practically, our framework can be used to
address the extremely challenging problem of reconstructing the
intrinsic interacting patterns of complex stochastic systems based
on small amounts of polarized time series. The key to success
of our method lies in our development of a novel class of
transformation, allowing the network inference problem to be
converted to the problem of sparse signal reconstruction, which
can then be solved by the standard compressed-sensing
algorithm. The accuracy and efficiency of our framework in
uncovering the network structure, the natural diversity in the
nodal characteristics, and any hidden source are guaranteed by
the CST with rigorous proof for low-data requirement and
convergence to optimal solution. The feasibility of our framework
has been demonstrated using a large number of combinations of
epidemic processes and network structures, where in all cases
highly accurate reconstruction is achieved. Our approach opens
up a new avenue towards fully addressing the inverse problem in
complex stochastic systems in a highly efficient manner, a
fundamental stepping stone towards understanding and control-
ling complex dynamical systems in general.

We have focused on two types of spreading dynamics, SIS and
CP, where an infected individual can recover and becomes
susceptible again. In this regard, even if an outbreak occurs,
control strategy such as targeted vaccination or quarantine can be
helpful to eliminate the virus eventually. A main purpose of our
work is to identify the key individuals in the network to
implement target control and to locate the source of infection to
isolate it so as to prevent recurrent infection in the future.
Although for any spreading dynamics, the most effective way to
prevent a large-scale outbreak is to implement control during the
early stage, this may be impractical in many situations. If we miss
the early stage, which is possible especially in complex networks
where the epidemic threshold can be near zero, to be able to
reconstruct the spreading network is of tremendous value. Besides
disease spreading, our framework is applicable to rumour or
information spreading. In this case, identifying the source of
rumour is important, a problem that our framework is capable of
solving.

Our work raises a number of questions to further and perfect
the theoretical and algorithmic development of reconstructing
complex dynamical systems. For example, if partial knowledge
about the network structure is available, the information can be
incorporated into our framework to further reduce the required
data amount. Moreover, for non-Markovian spreading processes,
our current reconstruction framework may fail. This raises the
need to develop new and more general approaches. Nevertheless,
our theory, due to its generality and applicability to various types
of inhomogeneous interactions, can be applied to networks of
networks or interdependent networks, in which there may be
different spreading patterns associated with distinct layers or
components. Taken together, our results provide strong credence
to the proposition that complex networks can be fully decrypted
from measurements, even when stochastic disturbance and
hidden sources are present. This can offer a deeper understanding
of complex systems in general and significantly enhance our
ability to control them based on, for example, the recently
developed controllability theory of complex networks52–58.

Methods
Spreading processes. The SIS model is a classic epidemic model that has been
used frequently to study a variety of spreading behaviours in social and computer
networks. Each node of the network represents an individual and links are con-
nections along which infection can propagate to others with certain probability.
At each time step, a susceptible node i in state 0 is infected with rate li if it is
connected to an infected node in state 1. If i connects to more than one infected
neighbour, the infection probability P01 is given by equation (4). At the same time,
infected nodes are continuously recovered to be susceptible at the rates di. The CP
model has been used extensively to describe, for example, the spreading of infection
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and competition of animals over a territory, where li is determined by equation (7).
The main difference between SIS and CP dynamics lies in the influence on a node’s
state from its vicinity. In both SIS and CP dynamics, li and di depend on the
individuals’ immune systems and are selected from a uniform distribution char-
acterizing the natural diversity (see Supplementary Note 7 for details of numerical
simulations). Moreover, a hidden source is regarded as infected for all time.

Mathematical formulation of reconstruction based on CST. For SIS dynamics,
suppose measurements at a sequence of times t¼ t1, t2, � � � , tm are available.
equation (5) leads to the following matrix form Ym� 1¼Um� (N� 1) �X(N� 1)� 1:

ln½1� P01
i ðt1Þ�

ln½1� P01
i ðt2Þ�
..
.

ln½1� P01
i ðtmÞ�

2
66664

3
77775

¼

S1ðt1Þ � � � Si� 1ðt1Þ Siþ 1ðt1Þ � � � SNðt1Þ
S1ðt2Þ � � � Si� 1ðt2Þ Siþ 1ðt2Þ � � � SNðt2Þ

..

. ..
. ..

. ..
. ..

. ..
.

S1ðtmÞ � � � Si� 1ðtmÞ Siþ 1ðtmÞ � � � SNðtmÞ

2
66664

3
77775

lnð1� liÞai1
..
.

lnð1� liÞai;i� 1

lnð1� liÞai;iþ 1

..

.

lnð1� liÞaiN

2
66666666664

3
77777777775
;

where the vector X(N� 1)� 1 contains all possible connections between node i and all
other nodes, and it is sparse for a general complex network. We see that if the vector
Ym� 1 and the matrixUm� (N� 1) can be constructed from time series, X(N� 1)� 1 can
then be solved by using CST. The main challenge here is that the infection prob-
abilities P01

i ðtÞ at different times are not given directly by the time series of the nodal
states. To devise a heuristic method to estimate the probabilities, we assume that the
neighbouring set Gi of the node i is known. The number of such neighbouring nodes
is given by ki, the degree of node i and their states at time t can be denoted as

SGi ðtÞ � fS1ðtÞ; S2ðtÞ; � � � ; Ski ðtÞg: ð11Þ
To approximate the infection probability, we use Si(t)¼ 0 so that at tþ 1, the node i
can be infected with certain probability. In contrast, if Si(t)¼ 1, Si(tþ 1) is only
related with the recovery probability di. Hence, we focus on the Si(t)¼ 0 case to
derive P01

i ðtÞ. If we can find two time instants: t1, t2AT (T is the length of time
series), such that Si(t1)¼ 0 and Si(t2)¼ 0, we can then calculate the normalized
Hamming distance H½SGi ðt1Þ; SGi ðt2Þ� between SGi ðt1Þ and SGi ðt2Þ, where the nor-
malized Hamming distance between two strings of equal length is defined as ratio of
the number of positions with different symbols between them and the length of
string. If H½SGi ðt1Þ; SGi ðt2Þ� ¼ 0, we can regard the states at the next time step,
Si(t1þ 1) and Si(t2þ 1), as i.i.d Bernoulli trials. In this case, using the law of large
numbers, we have

lim
l!1

1
l

Xl

n¼1

Siðtn þ 1Þ ! P01
i ð̂taÞ; 8 tn; SiðtnÞ ¼ 0; H½SGi ð̂taÞ; SGi ðtnÞ� ¼ 0: ð12Þ

A more intuitive understanding of (equation (12)) is that if the states of i’s neigh-
bours are unchanged, the fraction of times of i being infected by its neighbours over
the entire time period will approach the actual infection probability P01

i . Note,
however, that the neighbouring set of i is unknown and to be inferred. A strategy is
then to artificially enlarge the neighbouring set SGi ðtÞ to include all nodes in the
network, except i. In particular, we denote

S� iðtÞ � fS1ðtÞ; S2ðtÞ; . . . ; Si� 1ðtÞ; Siþ 1ðtÞ; . . . ; SN ðtÞg: ð13Þ
If H[S� i(t1), S� i(t2)]¼ 0, the condition H½SGi ðt1Þ; SGi ðt2Þ� ¼ 0 will be ensured.
Consequently, due to the nature of i.i.d Bernoulli trials, from the law of large
numbers, we have

lim
l!1

1
l

Xl

n¼1

Siðtn þ 1Þ ! P01
i ð̂taÞ; 8 tn; SiðtnÞ ¼ 0; H½S� i ð̂taÞ; S� iðtnÞ� ¼ 0:

Hence, the infection probability P01
i ð̂taÞ of a node at t̂a can be evaluated by averaging

over its states associated with zero-normalized Hamming distance between the
strings of other nodes at some time associated with t̂a . In practice, to find two strings
with absolute zero-normalized Hamming distance is unlikely. We thus set a
threshold D so as to pick the suitable strings to approximate the law of large
numbers, that is

1
l

Xl� 1

n¼1

Siðtn þ 1Þ ’ 1
l

Xl� 1

n¼1

P01
i ðtnÞ; 8 tn; SiðtnÞ ¼ 0; H½S� i ð̂taÞ; S� iðtnÞ�oD; ð14Þ

where S� i ð̂taÞ serves as a base for comparison with S� i(t) at all other times
and 1

l

Pl� 1
n¼1 P01

i ðtnÞ ’ P01
i ð̂taÞ. As H½S� i ð̂taÞ; S� iðtnÞ� is not exactly zero, there is a

small difference between P01
i ð̂taÞ and P01

i ðtnÞ ðn ¼ 1; � � � ; lÞ. We thus consider the
average of P01

i ðtnÞ for all tn to obtain P01
i ð̂taÞ, leading to the right-hand side of

equation (14). We denote hSi ð̂ta þ 1Þi ¼ 1
l

Pl� 1
n¼1 Siðtn þ 1Þ and hP01

i ð̂taÞi ¼
1
l

Pl� 1
n¼1 P01

i ðtnÞ. To reduce the error in the estimation, we implement the average on

S� i(t) over all selected strings through equation (14). The averaging process is with
respect to the nodal states Sj, j,ai(t) on the right-hand side of the modified dynamical
equation (5). Specifically, averaging over time t restricted by equation (14) on both
sides of equation (5), we obtain hln½1�P01

i ðtÞ�i ¼ lnð1� liÞ
PN

j¼1;j 6¼ i aijhSjðtÞi.
If li is small with insignificant fluctuations, we can approximately have
ln½1�hP01

i ðtÞi� ’ hln½1� P01
i ðtÞ�i (see Supplementary Fig. 10 and Supplementary

Note 8), which leads to ln½1�hP01
i ðtÞi� ’ lnð1� liÞ

PN
j¼1;j 6¼ iaijhSjðtÞi.

Substituting hP01
i ð̂taÞi by hSi ð̂ta þ 1Þi, we finally get

ln½1�hSi ð̂ta þ 1Þi� ’ lnð1� liÞ �
XN

j¼1;j 6¼ i

aijhSj ð̂taÞi: ð15Þ

Although the above procedure yields an equation that bridges the links of an arbi-
trary node i with the observable states of the nodes, a single equation does not
contain sufficient structural information about the network. Our second step is then
to derive a sufficient number of linearly independent equations required by CST to
reconstruct the local connection structure. To achieve this, we choose a series of base
strings at a number of time instants from a set denoted by Tbase, in which each pair of
strings satisfy

H½S� i ð̂tbÞ; S� i ð̂taÞ�4Y; 8t̂a; t̂b 2 Tbase; ð16Þ
where t̂a and t̂b correspond to the time instants of two base strings in the time series
and Y is a threshold. For each string, we repeat the process of establishing the
relationship between the nodal states and connections, leading to a set of equations at
different values of t̂a in equation (15), as described in the matrix form (equation (6)).
See Supplementary Fig. 11, 12 and Supplementary Note 8 for the dependence of
success rate on threshold D and Y for SIS and CP dynamics in combination with
four types of networks.

Inferring inhomogeneous infection rates. The values of the infection rate li of
nodes can be inferred after the neighbourhood of each node has been successfully
reconstructed. The idea roots in the fact that the infection probability of a node
approximated by the frequency of being infected calculated from time series is
determined both by its infection rate and by the number of infected nodes in its
neighbourhood. To provide an intuitive picture, we consider the following simple
scenario in which the number of infected neighbours of node i does not change
with time. In this case, the probability of i being infected at each time step is fixed.
We can thus count the frequency of the 01 and 00 pairs embedded in the time
series of i. The ratio of the number of 01 pairs over the total number of 01 and 00
pairs gives approximately the infection probability. The infection rate can then be
calculated by using equations (4) and (7) for the SIS and CP dynamics, respectively.
In a real-world situation, however, the number of infected neighbours varies with
time. The time-varying factor can be taken into account by sorting out the time
instants corresponding to different numbers of the infected neighbours, and the
infection probability can be obtained at the corresponding time instants, leading to
a set of values for the infection rate whose average represents an accurate estimate
of the true infection rate for each node.

To be concrete, considering all the time instants tn associated with kI infected
neighbors, we denote SðkIÞi ¼ ð1=lÞ

Pl
n¼1 Siðtn þ 1Þ, 8 tn,

P
j2Gi

SjðtnÞ ¼ kI and
Si(tn)¼ 0, where Gi is the neighbouring set of node i, kI is the number of infected
neighbours and SðkIÞi represents the average infected fraction of node i with kI
infected neighbours. Given SðkIÞi , we can rewrite equation (4) by substituting SðkIÞi for
P01
i ðtÞ and lðkIÞi for li, which yields lðkIÞi ¼ 1� exp½lnð1� SðkIÞi Þ=kI�. To reduce the

estimation error, we average lðkIÞi with respect to different values of kI, as follows:

ltruei ðSISÞ � hlðkIÞi i ¼ 1
NLi

X
kI2Li

lðkIÞi ; ð17Þ

where Li denotes the set of all possible infected neighbours during the epidemic
process and NLi denotes the number of different values of kI in the set. Analogously,
for CP, we can evaluate ltruei from equation (7) by

ltruei ðCPÞ � hlðkIÞi i ¼ 1
NLi

X
kI2Li

SðkIÞi ki
kI

ð18Þ

where ki ¼
PN

j¼1 aij is the node degree of i. Insofar as all the links of i have been
successfully reconstructed, SðkIÞi can be obtained from the time series in terms of the
satisfied Si(tnþ 1), allowing us to infer ltruei via equations (17) and (18).

Note that the method is applicable to any type of networks insofar as the
network structure has been successfully reconstructed.

Networks analysed. Model networks and real networks we used are described in
Supplementary Note 10 and Table 1.
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