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a b s t r a c t 

The role of incentive institutions on promoting cooperation in public goods game (PGG) 

has attracted much attention. Theoretical studies based on Nash equilibrium analysis pre- 

dict that the punishment effect is often stronger than the reward effect. Although this 

result is confirmed by empirical studies, subjects do not always play these rational strate- 

gies. Recent experiments indicate that most subjects in PGGs are conditional cooperators 

who tend to contribute the group average. In this paper, we consider PGGs with three 

types of subjects, namely, cooperators, defectors, and conditional cooperators. Evolutionary 

game method is applied to investigate how conditional cooperators affect the effectiveness 

of different types of incentives. Overall, having conditional cooperators cannot lead to a 

higher contribution level in the standard PGG or the PGG with institutional rewards. How- 

ever, they can enhance the effectiveness of institutional punishment, where a high con- 

tribution level can be maintained even for small punishments. As a consequence, in PGGs 

with conditional cooperators, punishment always leads to a higher contribution rate than 

do rewards. Numerical analysis indicates that this result is robust to errors in decision 

making. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Sustaining cooperation in groups of unrelated individuals is a challenging question [1–3] . In human society, a solution

for this problem is to establish institutions that reward cooperators and punish exploiters. The role of incentives in boosting

cooperation is a well-studied topic in economics and evolutionary biology (see [4–6] for three review papers). Most of pre-

vious studies are based on Nash equilibrium (NE) analysis and evolutionary game analysis, where individuals tend to choose

the strategy with a higher payoff [7–19] . These studies revealed that effect of institutional incentives on collective actions

relies on the size of the incentive. If the incentive size is small, then both reward and punishment cannot promote cooper-

ation, and free-riding is the only evolutionarliy stable strategy (ESS). If the incentive is large, then cooperation becomes a

unique ESS for the both types of incentives. Finally, if the incentive is intermediate, then the effects of reward and punish-

ment are not equivalent. In the case of punishment, the cooperative state and defective state are bistable, which means that

punishment can eliminate extremely selfish behaviors in a cooperative population but does not work for the selfish popu-

lation. In contrast, reward can cause only the stable coexistence of cooperators and defectors. Overall, an intermediate size
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of punishment is sufficient to support full contribution, but reward can maintain stable cooperation only for a large incen-

tive size. Empirical studies on public goods game (PGG) with incentives have confirmed that both institutional reward and

institutional punishment can curb free riding and that the punishment effect is often stronger than the reward effect [20–

28] . Although Nash equilibrium analysis correctly predicts which incentives are better at promoting cooperation, individuals

do not always play payoff-maximizing strategies. Recent experiments observed that most subjects in PGGs with incentives

are conditional cooperators (also called conformists), where they tend to decrease (or increase) their contributions if they

contributed more (or less) than the group average [25,27,28] . 

It has been shown that conditional cooperators play a predominant role in social dilemma games such as the repeated

Prisoner’s Dilemma (PD) game and repeated PGG. In the repeated PD, tit-for-tat (TFT) should be considered one of the

most famous conditional cooperative strategies. If most subjects in the population adopt this strategy, then full cooperation

can be evolutionarily stable via direct reciprocity [2,3] . Moreover, recent studies showed that conditional cooperators can

also enhance cooperation in network PD game [29,30] . In the repeated PGG, a conditional cooperator tends to choose the

group average contribution [31–36] . Empirical studies indicated that approximately half of the individuals in PGGs can be

classified as conditional cooperators [32,34–36] . The existence of conditional cooperators can help to maintain a high con-

tribution level in smaller groups and slow the decrease in the average contribution in larger groups [28,33,34,36,37] . Recent

experiments have revealed that conditional cooperators are also widespread in PGGs with institutional incentives [25,27,28] .

Although statistical analysis and numerical simulations showed that the existence of conditional cooperators may help to

enhance cooperation [27,28] , a systematic study of the effect of conditional cooperators on PGGs with different types of

incentives is still lacking. 

In this paper, we consider PGGs with three types of subjects, namely, cooperators, defectors, and conditional cooperators.

Naturally, a cooperator always contributes all of his/her initial endowment, and a defector always contributes nothing. In

contrast, the behaviour of a conditional cooperator depends on the population composition, where the more cooperators

and fewer defectors there are, the more the conditional cooperator contributes [32,34] . Suppose that there is a third-party

institution that can reward and punish players based on their contributions, where full contributors will be rewarded and

free riders will be punished [8–13,16,18,21,23,26,38] . To better simulate reality, we consider that individuals are boundedly

rational and do not always choose the optimal strategy. Following previous studies, we assume that players update their

strategies by imitating individuals with higher payoffs and may make mistakes in strategy choosing [16,39–41] . This strat-

egy updating process can be formulated as the replicator-mutator dynamics [47] . To investigate the effect of conditional

cooperators on different types of incentives, we compare the average contribution levels at the stable equilibria. Overall,

conditional cooperators cannot lead to a higher cooperation level for standard PGGs and PGGs with institutional rewards. In

contrast, they can enhance the effectiveness of institutional punishment, where a high cooperation level can be maintained

even for small punishments. 

2. Model and analysis 

2.1. PGG with conditional cooperators 

Consider an infinitely large population with three types of players, cooperators, defectors, and conditional cooperators,

where their frequencies are x, y , and z , respectively. In each time step, n individuals are randomly chosen from the popula-

tion to form a PGG [8,9,16] . In the PGG, each player can contribute an amount between 0 and c to a common pool. The total

contributions to common pool will be multiplied by a factor r with 1 < r < n and split evenly among all n group mem-

bers. Thus, a rational player intends to contribute nothing, but the social optimal is that all players contribute their total

endowment. Intuitively, r measures the benefit-to-cost ratio of the cooperative behaviours, where a larger (or a smaller) r

decreases (or increases) the social dilemma strength. We note that the PGG is closely related to a special case of the Pris-

oner’s Dilemma game, the Donation game [3,42–46] . In the Donation game, cooperation means that confers a benefit of b

at a cost of c , and the dilemma strength of the game can be measure by c 
b−c 

[42–44,46] . Anomalous to the PGG, a larger

benefit-to-cost ratio decreases the strength of the dilemma. 

In line with previous studies, we assume that a cooperator always contributes c , and a defector always contributes 0

[2,3,8,9,16] . In contrast, the behaviour of a conditional cooperator depends on the population composition. For simplicity,

we assume that the contribution of a conditional cooperator equals the population average, which has the form c x 
x + y . (see

Section 3 for more discussions). Furthermore, if the population consists of conditional cooperators only, then they act as

cooperators and always contribute c . We now calculate the expected payoffs for the three types of players. In a randomly

formed PGG, the probability that a focal player has n C cooperators, n D defectors, and n CC conditional cooperators among the

n − 1 co-players is (
n − 1 

n C 

)(
n − 1 − n C 

n D 

)
x n C y n D z n CC , (1) 

where n C + n D + n CC = n − 1 . If the focal player is a cooperator, then his/her payoff is 

cr 

n 

(
n C + 1 + 

x 

x + y 
n CC 

)
− c. (2) 
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If the focal player is a defector, then the payoff is 

cr 

n 

(
n C + 

x 

x + y 
n CC 

)
. (3)

Finally, if he/she is a conditional cooperator, then the payoff is 

cr 

n 

(
n C + 

x 

x + y 
(n CC + 1) 

)
− c 

x 

x + y 
. (4)

We denote the expected payoffs of a cooperator, a defector, and a conditional cooperator by P C , P D , and P CC , respectively.

Thus, in a randomly formed PGG with n − 1 co-players, 

P C = 

∑ n −1 
n C =0 

∑ n −1 −n C 
n D =0 

(
n −1 
n C 

)(
n −1 −n C 

n D 

)
x n C y n D z n CC 

(
cr 
n 

(
n C + 1 + 

x 
x + y n CC 

)
− c 

)
= 

rc(n −1) 
n 

x 
x + y − c + 

cr 
n 
, 

P D = 

∑ n −1 
n C =0 

∑ n −1 −n C 
n D =0 

(
n −1 
n C 

)(
n −1 −n C 

n D 

)
x n C y n D z n CC cr 

n 

(
n C + 

x 
x + y n CC 

)
= 

rc(n −1) 
n 

x 
x + y , 

P CC = 

∑ n −1 
n C =0 

∑ n −1 −n C 
n D =0 

(
n −1 
n C 

)(
n −1 −n C 

n D 

)
x n C y n D z n CC 

(
cr 
n 

(
n C + 

x 
x + y (n CC + 1) 

)
− c x 

x + y 

)
= c(r − 1) x 

x + y . 

(5)

Furthermore, the population average payoff is P̄ = xP C + yP D + zP CC = c(r − 1) x 
x + y . Unsurprisingly, in the standard PGG, the

expected payoff for a condition cooperator is the same as the group average. We further define the fitness of the three

types of players by f C , f D , and f CC , respectively, where the fitness has the form f X = ωP X + 1 − ω with X = { C, D, C C } . The

parameter ω ∈ [0, 1] measures the intensity of selection, where the fitness is not affected by the payoff when ω = 0 and is

entirely up to the payoff when ω = 1 [2,47] . 

Following previous studies, we use evolutionary game dynamics to investigate PGGs with three types of players [2,3,47] .

We first assume that players adjust their strategies by imitating individuals with higher fitness. This strategy updating pro-

cess can be formulated as the replicator dynamics 

dx 
dt 

= x ( f C − f̄ ) , 
dy 
dt 

= y ( f D − f̄ ) , 
dz 
dt 

= z( f CC − f̄ ) , 

(6)

where f̄ = x f C + y f D + z f CC is the average fitness. From Eq. (6) , a strategy with an expected fitness higher than the average

will be adopted by more players. 

For the standard PGG, Eq. (6) has two sets of equilibria, (0 , y, 1 − y ) with y ∈ (0, 1] and (x, 0 , 1 − x ) with x ∈ [0, 1]. In the

first set of equilibria, the population consists of defectors and conditional cooperators, so no one contributes. In the second

set of equilibria, the population consists of cooperators and conditional cooperators, so full contribution can be achieved.

Since the fitness of a cooperator (or a defector) is always lower (or higher) than the group average, the trajectories of

Eq. (6) will converge to the first set of equilibria (see Fig. 1 a). Thus, in the standard PGG, free riding is the only evolutionarily

stable state even if there are conditional cooperators in the population. 

2.2. PGG with institutional incentives 

We now introduce institutional incentives into the PGG. Suppose that there is a third-party institution that can reward

and punish players based on their contributions. Specifically, players who contribute c (i.e., full contributors) will be re-

warded, and players who contribute 0 (i.e., free riders) will be punished. Thus, if defectors exist in the population, then

the institution only rewards cooperators since a conditional cooperator contributes less than c . In contrast, if there is no

defector in the population, then conditional cooperators act as cooperators, and the institution rewards both cooperators

and conditional cooperators. Analogously, if cooperators exist in the population, then only defectors will be punished. If not,

then both defectors and conditional cooperators will be punished. 

Regarding the institutional reward, we suppose that the total amount of the reward is R . For the case with defectors (i.e.,

y > 0), the reward is shared among the cooperators. Thus, P D and P CC are the same as in Eq. (5) , and the expected payoff

for a cooperator in a randomly formed PGG with n C cooperators, n D defectors, and n CC conditional cooperators among the

n − 1 co-players is 

P C = 

∑ n −1 
n C =0 

∑ n −1 −n C 
n D =0 

(
n −1 
n C 

)(
n −1 −n C 

n D 

)
x n C y n D z n CC 

(
cr 
n 
(n C + 1 + 

x 
x + y n CC ) − c + 

R 
n C +1 

)
= 

rc(n −1) 
n 

x 
x + y − c + 

cr 
n 

+ 

R 
n 

1 −(1 −x ) n 

x 
. 

(7)

In this case, Eq. (6) has two sets of equilibria, (i) (0 , y, 1 − y ) with y ∈ (0, 1] and (ii) (x ∗, 1 − x ∗, 0) , where x ∗ is the solution of
c(n −r) 

R = 

1 −(1 −x ) n 

x (see Appendix A for equilibrium calculation). Furthermore, for the case without defectors (i.e., y = 0 ), both

cooperators and conditional cooperators are rewarded. In this case, cooperators and conditional cooperators have the same
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Fig. 1. PGG without decision errors. These figures show phase portraits of the replicator equations Eq. (6) with different types of incentives, where stable 

equilibria are denoted by solid points and unstable equilibria are denoted by circles. Blue corresponds to fast dynamics, and red corresponds to slow 

dynamics. Parameters are taken as n = 4 , c = 1 , r = 2 , and ω = 0 . 5 . Furthermore, the incentive sizes are (a) R = P = 0 , (b) R = 0 . 5 , P = 0 , (c) R = 1 , P = 0 , 

(d) R = 3 , P = 0 , (e) R = 0 , P = 0 . 5 , (f) R = 0 , P = 1 , and (g) R = 0 , P = 3 . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

expected payoff P C = P CC = c(r − 1) + 

R 
n . Thus, (iii) (x, 0 , 1 − x ) with x ∈ [0, 1] is another set of equilibria for the imitation

process because both C and CC players have no incentive to change their strategies. In the first set of equilibria, there is no

cooperator in the population, so no one contributes. In the second equilibrium, cooperators and defectors coexist, and the

average contribution rate is x ∗. Specifically, x ∗ is increasing in R and r . In the third set of equilibria, there is no defector in

the population, so full contribution can be achieved. The stabilities of the three sets of equilibria can be described in terms

of the incentive size (see proof in Appendix A ). If R < 

c(n −r) 
n , then the trajectories converge to the set of free-riding equilibria

(0 , y, 1 − y ) with y ∈ (0, 1] (see Fig. 1 b). If c(n −r) 
n < R < c(n − r) , then the coexistence equilibrium (x ∗, 1 − x ∗, 0) is globally

stable. (see Fig. 1 c). Finally, if R > c(n − r) , then the trajectories converge to the set of cooperative equilibria (x, 0 , 1 − x )

with x ∈ [0, 1] (see Fig. 1 d). It is worth noting that these results are perfectly consistent with the case of PGGs without

conditional cooperators [7,16] . This implies that the existence of conditional cooperators does not affect the effectiveness of

the reward. 

Regarding the institutional punishment, we suppose that the total amount of punishment is P . Analogous to the analysis

of IR, we first focus on the case with cooperators (i.e. x > 0), where punishment is distributed among the defectors. Thus,

P C and P CC are the same as in Eq. (5) , and P D is rewritten as 

P D = 

∑ n −1 
n C =0 

∑ n −1 −n C 
n D =0 

(
n −1 
n C 

)(
n −1 −n C 

n D 

)
x n C y n D z n CC cr 

n 
(n C + 

x 
x + y n CC − P 

n D +1 

)
= 

rc(n −1) 
n 

x 
x + y − P 

n 
1 −(1 −y ) n 

y 
. 

(8) 

In this case, Eq. (6) has two sets of equilibria, (i) (x, 0 , 1 − x ) with x ∈ (0, 1] and (ii) (1 − y ∗, y ∗, 0) , where y ∗ is the solution

of c(n −r) 
P = 

1 −(1 −y ) n 

y (see Appendix B for equilibrium calculation). In addition, for the case without cooperators and with

defectors (i.e., x = 0 , y > 0 ), both defectors and conditional cooperators are punished. In this case, defectors and conditional

cooperators have the same expected payoff. Thus, (iii) (0 , y, 1 − y ) with y ∈ (0, 1) is another set of equilibria for the imitation

process. Finally, (iv) (0,0,1) is also an equilibrium, where in this case, the population consists of conditional cooperators

only. Analogous to IR, full contribution can be achieved in the first and fourth sets of equilibria, cooperators and defectors

coexist at the second equilibrium, and no one contributes at the third set of equilibria. Interestingly, the second and third

sets of equilibria must be unstable for any P > 0. The trajectories of Eq. (6) will converge to the first set of equilibria for

P > 

c(n −r) 
n and move toward the fourth set of equilibria for 0 < P < 

c(n −r) 
n (see proof in Appendix B ). This implies that the full

contribution state is always globally stable. It has been shown that for PGGs without conditional cooperators, free riding is

the only stable equilibrium for small incentives 0 < P < 

c(n −r) 
n , and cooperation and defections are bistable for intermediate

incentives c(n −r) 
n < P < c(n − r) [7,16] . Thus, the existence of conditional cooperators can help to eliminate defectors and

stabilize cooperation even for very small punishment (see Fig. 1 e–g). 
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Fig. 2. PGG with decision errors. These figures show phase portraits of the replicator-mutator equations Eq. (9) with different types of incentives, where 

stable equilibria are denoted by solid points and unstable equilibria are denoted by circles. Blue corresponds to fast dynamics, and red corresponds to slow 

dynamics. Parameters are taken as n = 4 , c = 1 , r = 2 , ω = 0 . 5 , and μ = 0 . 1 . Furthermore, the incentive sizes in different figures are (a) R = P = 0 , (b) 

R = 0 . 5 , P = 0 , (c) R = 1 , P = 0 , (d) R = 3 , P = 0 , (e) R = 0 , P = 0 . 5 , (f) R = 0 , P = 1 , and (g) R = 0 , P = 3 . (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. The effect of decision errors 

To test the robustness of the above results, we add errors in decision making. In addition to preferential imitation of suc-

cessful strategies, an individual randomly chooses one of the three strategies C, D , and CC with probability μ. The standard

replicator dynamics Eq. (6) are then modified into the following replicator-mutator dynamics: 

dx 
dt 

= x ( f C − f̄ ) + 

μ
3 
(1 − 3 x ) , 

dy 
dt 

= y ( f D − f̄ ) + 

μ
3 
(1 − 3 y ) , 

dz 
dt 

= z( f CC − f̄ ) + 

μ
3 
(1 − 3 z) , 

(9)

Replicator-mutator dynamics was first introduced in the context of evolution biology, where in this model the selection and

mutation terms are separated [47] . For instance, in the first equation of Eq. (9) , x ( f C − f̄ ) is the selection term and 

μ
3 (1 − 3 x )

is the mutation term. 

We find that errors have significant effects on the evolutionary process. First, the boundary states x = 0 , y = 0 , or z = 0

are no longer equilibria when subjects make mistakes. As a result, full cooperation cannot be sustained. Second, for larger

μ, Eq. (9) has a unique and globally stable interior equilibrium, which means that cooperators, defectors, and conditional

cooperators will stably coexist (see Fig. 2 ). Specifically, the interior equilibrium can be expressed explicitly for the standard

PGG, where the average contribution rate in this equilibrium is 1 
2 −

√ 

k 2 +1 −1 
2 k 

with k = 

ωc(n −r) 
μn (see proof in Appendix C ).

Note that the contribution rate is always less than half; mutations cannot reverse the disadvantage of cooperation in the

standard PGG. Furthermore, the contribution rate decreases to 0 as μ goes to 0. 

We next look at the effect of errors in the PGG with incentives. Since it is difficult to obtain an explicit expression

for the interior equilibrium, we study the effects of errors on equilibrium through numerical simulations. Fig. 2 shows

phase portraits of the replicator-mutator equations Eq. (9) with different types of incentives, and Figs. 3 and 4 compare

the contribution rates at the stable equilibria of Eq. (9) for the PGG with reward and punishment for a variety of μ and r .

Overall, the effect of the reward is robust to a small μ. As shown in Fig. 3 a, the contribution rate for μ = 0 . 01 is very close

to μ = 0 for all R . In contrast, the effect of punishment is sensitive to μ, where the contribution rate drops significantly for

smaller P . Nevertheless, punishment still promotes contribution better than reward (see Figs. 3 and 4 ). For both reward and

punishment, the incentive size plays a crucial role in determining the stable contribution rate, where the contribution rate

is monotonically increasing in the incentive size. In addition, for smaller R and P , decision errors can help to increase the

frequency of cooperators and decrease the frequency of defectors, i.e., the contribution rate is improved. However, for larger

R and P , decision errors hinder the positive effect of the incentive institutions, where the stable contribution rate is lower

than the case without errors. 
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Fig. 3. The effect of decision errors on contribution rate. These figures show the stable contribution rate for PGGs with different μ. Parameters are taken 

as n = 4 , c = 1 , r = 2 , and ω = 0 . 5 . (a) PGG with institutional reward, (b) PGG with institutional punishment. 

Fig. 4. The effectiveness of reward and punishment for PGG with errors. These figures show the stable contribution rate for PGGs with different r and 

incentive sizes. Blue corresponds to a low contribution rate, and red corresponds to a high contribution rate. Parameters are taken as n = 4 , c = 1 , μ = 0 . 1 , 

and ω = 0 . 5 . (a) PGG with institutional reward, (b) PGG with institutional punishment. The contribution rate is increasing in r and incentive size for both 

reward and punishment. Furthermore, punishment promotes contribution better than reward.. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

2.4. The effect of conditional cooperators 

To further reveal how conditional cooperators affect the effectiveness of reward and punishment, we compare the stable

contribution rate for PGG with and without conditional cooperators. The replicator-mutator dynamics for PGGs with incen-

tives and without conditional cooperators have been studied by Dong et al. [16] . They showed that when subjects make

mistakes, reward promotes cooperation better for smaller incentives and punishment promotes cooperation better for in-

termediate and larger incentives. In the case of reward, our result shows that conditional cooperators have a limited effect

on promoting cooperation (see Fig. 5 a and b). Games with and without conditional cooperators have the same stable con-

tribution rate for μ = 0 , and the stable contribution rates are slightly different for μ > 0. In contrast, the effectiveness of

punishment depends crucially on conditional cooperators, where the existence of conditional cooperators can enhance co-

operation for smaller incentive sizes. For instance, when P = 0 . 5 , subjects do not contribute in the PGG without conditional

cooperators, and the average contribution rate is approximately 50% in the PGG with conditional cooperators (see Fig. 5 c

and d). Overall, PGG with punishment and conditional cooperators leads to the highest cooperation rate than other settings

such as PGG with reward or without conditional cooperators. 
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Fig. 5. The role of conditional cooperators. These figures show the stable contribution rate for PGGs with and without conditional cooperators. Blue 

corresponds to a low contribution rate, and red corresponds to a high contribution rate. Parameters are taken as n = 4 , c = 1 , r = 2 , and ω = 0 . 5 . (a) PGG 

with reward and conditional cooperators, (b) PGG with reward and without conditional cooperators, (c) PGG with punishment and conditional cooperators, 

and (d) PGG with punishment and without conditional cooperators. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Discussion 

Recent experiments indicate that most subjects in PGGs are conditional cooperators and tend to choose the group average

contribution [25,27,28,32,34–36] . In this paper, we study PGGs with three types of players, namely, cooperators, defectors,

and conditional cooperators, and analyze the effects of conditional cooperators on different types of incentives by comparing

the average contribution levels at the stable equilibria of evolutionary dynamics. Overall, conditional cooperators cannot

lead to a higher contribution level for a standard PGG or a PGG with institutional reward. In contrast, they can enhance the

effectiveness of institutional punishment, where a high contribution level can be maintained even for small punishments.

As a result, in the PGG with conditional cooperators, punishment always leads to a higher contribution rate than reward,

and this result is robust to decision errors. 

We now provide an intuitive explanation for why conditional cooperators can promote cooperation in the PGG with

punishment and cannot promote cooperation in the standard PGG or the PGG with reward. In the standard PGG, defec-

tors always have a payoff higher than cooperators regardless of the existence of conditional cooperators. Thus, conditional

cooperators cannot change the evolutionary trend. In the PGG with reward, if there are cooperators and defectors in the

population, then the expected payoff of conditional cooperators must be less than that of defectors because they contribute

more but cannot obtain any reward. In this case, the game will degenerate to the situation without conditional cooperators.

However, in the PGG with punishment, conditional cooperators perform better than cooperators (because they contribute

less) and defectors (because they will not be punished) in general. Therefore, more individuals will adopt a conditional

cooperative strategy in the evolutionary process. The reduction in the number of defectors then further increases the aver-

age amount of punishment for each defector. Finally, all defectors are eliminated, and full contribution can be maintained.

Specifically, for strong punishment, defectors decrease faster than cooperators, so cooperators and conditional cooperators

will coexist. In contrast, for weak punishment, most individuals will eventually adopt a conditional cooperative strategy. 

In this paper, we simplify the PGG to one shot and assume that conditional cooperators always contribute the average.

There are mainly two classes of models for studying the evolution of conditional cooperative strategies in social dilemma

games [3] . The first class is based on repeated games, and individuals are assumed to adopt reactive strategies, such as TFT,

where their action in a round is determined by what occurred in the previous round [50–54] . The second class simplifies
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the repeated game to a one-shot game by considering the average behaviour and payoff of an individual during repeated

play [55–58] . Dong et al. [37] showed that in a repeated PGG, the contribution of a conditional cooperator will converge to

the population average as the expected number of rounds increases. Thus, we use their result to simplify the calculation.

In addition, following the intuition explained in the above paragraph, conditional cooperators need not be restricted to

contributing the average. In fact, conditional cooperators can promote cooperation in the PGG with punishment as long as

their contribution is between those of defectors and cooperators. 

We also assume that the incentive institution only rewards full contributors and only punishes free riders. This type of

incentive can be characterized as an absolute incentive institution, where the institution punishes (or rewards) all individuals

whose contribution is less (or higher) than a predefined threshold [8–13,16,18,21,23,26,38] . We note that our result depends

crucially on the threshold setting. If conditional cooperators are rewarded as cooperators (i.e., the reward threshold is low),

then the coexistence equilibrium for intermediate reward is no longer stable because conditional cooperators always have a

higher payoff than cooperators. Therefore, the existence of conditional cooperators weakens the effectiveness of the reward

institution. In contrast, if conditional cooperators are also punished as defectors (i.e., the punishment threshold is high), then

payoff for conditional cooperators is always less than that of defectors. The game then degenerates to the situation without 

conditional cooperators, and cooperation cannot be improved. A more complicated case is that in which the incentive is

probabilistic or the amount of the incentive depends on the contribution [7,17,19,25,27,28,4 8,4 9] . In this case, rewarding

conditional cooperators may help to promote cooperation [28] . 

In addition, our paper focuses on the cases of reward only and punishment only. It has been shown that a combination of

reward and punishment often has a stronger effect on promoting cooperation [9,10,12,16,19,25,27] . Thus, a natural question

is how conditional cooperators affect collective cooperation when the institution provides both reward and punishment. This

would be a possible direction for future study. 

In summary, our study provides a deeper understanding for the role of conditional cooperators on PGGs with institutional

incentives. It has been shown that in PGGs with institutional punishment, conditional cooperative strategies can help to di-

lute the risks of being exploited and punished [25] . Our results reveal that conditional cooperators can not only survive in

the evolutionary process but can also help to enhance the effectiveness of punishment. When there are conditional cooper-

ators in the population, institutional punishment is a more reliable way of promoting collaborative effort s than institutional

reward: it works even for small incentive size and its effect is robust to errors in decision making. 
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Appendix A. Stability analysis for the PGG with reward 

For institutional reward, Eq. (6) is written as 

dx 
dt 

= ω 

(
− c(n −r) 

n 
xy 

x + y + 

R 
n 
(1 − x )(1 − (1 − x ) n ) 

)
, 

dy 
dt 

= ω 

(
c(n −r) 

n 
xy 

x + y − R 
n 

y (1 − (1 − x ) n ) 
)
, 

dz 
d t 

= −ω 

R 
n 

z(1 − (1 − x ) n ) , 

(10) 

where y > 0. Note that dz 
d t 

< 0 for x, z ∈ (0, 1), Eq. (10) does not have an interior equilibrium. We now calculate the

boundary equilibria of Eq. (10) . From 

dz 
d t 

= 0 , we have x = 0 or z = 0 . On the on hand, since dx 
dt 

= 

dy 
dt 

= 0 for x = 0 , the first

set of equilibria is (0 , y, 1 − y ) with y ∈ (0, 1]. On the other hand, when z = 0 , we have x + y = 1 . Thus, dx 
dt 

= 

dy 
dt 

= 0 if and

only if c(n −r) 
R = 

1 −(1 −x ) n 

x . Therefore, the second set of equilibrium is (x ∗, 1 − x ∗, 0) such that c(n −r) 
R = 

1 −(1 −x ) n 

x . In addition, x ∗

is unique since that 1 −(1 −x ) n 

x = 

∑ n −1 
k =0 

(1 − x ) k is a decreasing function of x . Notice that c(n −r) 
R is a decreasing function of r

and R, x ∗ is increasing in r and R . 

From Eq. (10) , we have 

dx 

dt 
= 

(
R − c(n − r) 

n 

)
x + o(x ) (11) 

https://doi.org/10.13039/501100001809
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for x close to 0, and 

dy 

dt 
= 

(
c(n − r) − R 

n 

+ 

R 

n 

(1 − (1 − x ) n ) 
)

y + o(y ) (12)

for y close to 0. Furthermore, note that dz 
d t 

< 0 for z ∈ (0, 1) and x ∈ (0, 1), Eq. (10) does not have an interior fixed point or

periodic solutions. 

Following Dong et al. [16] , the second set of equilibria (x ∗, 1 − x ∗, 0) exists if and only if c(n −r) 
n < R < c(n − r) . In this

case, dx 
dt 

> 0 for x is close to 0, dy 
dt 

> 0 for y is close to 0, and 

dz 
d t 

< 0 . This implies that the first set of equilibria (i.e., x = 0 )

and the third set of equilibria (i.e., y = 0 ) are unstable. Thus, all trajectories will converge to the second set of equilibria. 

If 0 < R < 

c(n −r) 
n , then 

dx 
dt 

< 0 for x close to 0, dy 
dt 

> 0 for y close to 0, and 

dz 
d t 

< 0 . In this case, the second set of equilibria

does not exist, and the third set of equilibria is unstable. Thus, all trajectories will converge to the first set of equilibria. 

Finally, if R > c(n − r) , then 

dx 
dt 

> 0 for x close to 0, dy 
dt 

< 0 for y close to 0, and 

dz 
d t 

< 0 . In this case, the second set of

equilibria does not exist, and the first set of equilibria is unstable. Thus, all trajectories will converge to the third set of

equilibria. 

Appendix B. Stability analysis for the PGG with punishment 

For institutional punishment, Eq. (6) is written as 

dx 
dt 

= ω 

(
− c(n −r) 

n 
xy 

x + y + 

P 
n 

x (1 − (1 − y ) n ) 
)
, 

dy 
dt 

= ω 

(
c(n −r) 

n 
xy 

x + y − P 
n 
(1 − y )(1 − (1 − y ) n ) 

)
, 

dz 
d t 

= ω 

P 
n 

z(1 − (1 − y ) n ) , 

(13)

where x > 0. Note that dz 
d t 

> 0 for y, z ∈ (0, 1), Eq. (13) does not have an interior equilibrium. We now calculate the boundary

equilibria of Eq. (13) . From 

dz 
d t 

= 0 , we have y = 0 or z = 0 . On the on hand, since dx 
dt 

= 

dy 
dt 

= 0 for y = 0 , the first set of

equilibria is (x, 0 , 1 − x ) with x ∈ (0, 1]. On the other hand, when z = 0 , we have x + y = 1 . Thus, dx 
dt 

= 

dy 
dt 

= 0 if and only

if c(n −r) 
P = 

1 −(1 −y ) n 

y . Therefore, the second set of equilibrium is (1 − y ∗, y ∗, 0) such that c(n −r) 
P = 

1 −(1 −y ) n 

y . In addition, y ∗ is

unique since that 1 −(1 −y ) n 

y = 

∑ n −1 
k =0 

(1 − y ) k is a decreasing function of y . 

From Eq. (13) , we have 

dx 

dt 
= 

(
− c(n − r) 

n 

+ 

P 

n 

(1 − (1 − y ) n ) 
)

x + o(x ) (14)

for x close to 0, and 

dy 

dt 
= 

(
c(n − r) 

n 

− P 

)
y + o(y ) (15)

for y close to 0. 

Note that dz 
d t 

> 0 for z ∈ (0, 1) and y ∈ (0, 1), Eq. (13) does not have an interior fixed point or periodic solutions. Further-

more, the second set of equilibria (1 − y ∗, y ∗, 0) must be unstable [16] , and a trajectory with initial value in (or close to) the

third set of equilibria (i.e., x = 0 and y > 0) will move toward (0,0,1) since dz 
d t 

> 0 . 

If P > 

c(n −r) 
n , then 

dy 
dt 

< 0 for y close to 0. Thus, all trajectories will converge to the first set of equilibria or (0,0,1). 

In contrast, if 0 < P < 

c(n −r) 
n , then 

dy 
dt 

> 0 for y close to 0, which means that the first set of equilibria is also unstable. In

this case, (0,0,1) is the only stable equilibrium because dz 
d t 

> 0 always holds. This implies that all trajectories will converge

to the fourth set of equilibria (0,0,1). 

Appendix C. Stability analysis for the standard PGG with errors 

For the standard PGG, Eq. (9) can be written as 

dx 
dt 

= − c(n −r) 
n 

xy 
x + y + 

μ
3 
(1 − 3 x ) , 

dy 
dt 

= 

c(n −r) 
n 

xy 
x + y + 

μ
3 
(1 − 3 y ) , 

dz 
d t 

= 

μ
3 
(1 − 3 z) . 

(16)

Eq. (16) has a unique interior equilibrium 

(x, y, z) = 

(
1 

3 

−
√ 

k 2 + 1 − 1 

3 k 
, 

1 

3 

+ 

√ 

k 2 + 1 − 1 

3 k 
, 

1 

3 

)
, (17)
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where k = 

ωc(n −r) 
μn . To analyse the stability of this equilibrium, we calculate the eigenvalues of the Jacobian matrix in this

equilibrium. The real parts of the eigenvalues are −μ and −μ(2 − k ( 1 3 −
√ 

k 2 +1 −1 
3 k 

) 2 ) , where k ( 1 3 −
√ 

k 2 +1 −1 
3 k 

) 2 takes its max-

imum 

6 −4 
√ 

2 
9 at k = 1 . Since all the eigenvalues have negative real parts, the interior equilibrium is locally stable. Note that

dz 
dt 

is independent of x and y , and Eq. (16) does not have periodic solutions. Thus, the interior equilibrium is also globally 

stable. In addition, the average cooperation rate in this equilibrium is 1 
2 −

√ 

k 2 +1 −1 
2 k 

. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.amc.2020.125600 
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