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Abstract

Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement
that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for
objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT) provides a window
into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is
integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the
relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to
encode time by ‘climbing’ activity, seen in cortex during tasks with a timing requirement. The model is a network of
simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables
the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental
subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of
a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and
NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network
simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input,
an established form of gain modulation. Like the timing network’s interval estimates, decision times show signature
characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for
timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for
experimental verification.
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Introduction

It is likely that the cerebral cortex evolved to provide a model of the

world, serving decisions for action. Our actions take place in space

and time and both of these dimensions are considered in the

dominant hypothesis of decision making, where noisy spatial evidence

is averaged over time (see [1–3]). The longer we spend averaging, the

more accurate our decisions [4]. A trade-off between speed and

accuracy is implicit in this framework and is a hallmark of decision

tasks [5], but the mechanism by which we determine how long to

spend averaging is an open question [6]. In recent years, there has

been increasing acknowledgement that the encoding of time may be

as crucial to behaviour as the encoding of space [7] and several

studies have considered roles for temporal codes in decision making

[8–11]. Under this approach, time is not a passive medium for spatial

averaging, but is actively encoded during decisions, determining the

rate at which they unfold. Accordingly, the speed-accuracy trade-off

(SAT) can be controlled by the estimation of temporal intervals,

determining how long spatial evidence is integrated [11].

Our ability to represent time covers at least twelve orders of

magnitude, from the scale of microseconds to circadian rhythms,

and different neural mechanisms are believed to support

representations of vastly different temporal duration [12,13].

Here, we focus on the hundreds of milliseconds range, the relevant

order for the most well studied perceptual decision tasks [1,3,14].

Two fundamental questions in the study of temporal processing

are whether the representation of time is centralized or distributed

[15,16], and whether the circuitry involved is specialized or

generic [17,18]. In this paper, we propose that local-circuit cortical

processing is inherently suited to the representation of space and

time on this order, supporting a distributed, generic processing

framework. To this end, we demonstrate that a generic biophysical

model of a local cortical circuit can estimate time in the hundreds

of milliseconds range, where ‘climbing’ activity resembles that seen

in cortex during tasks with a timing requirement and estimates of

temporal intervals show signature characteristics of temporal

estimates by experimental subjects. The network estimates

different intervals by the scaling of a single term controlling

local-circuit dynamics by the strength of NMDA receptor

(NMDAR) conductance. Analysis of network dynamics formally

characterizes this timing mechanism and a simple learning rule is

sufficient for the network to quickly learn the intervals.
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In simulations of a decision task, we couple two such generic

networks with identical parameters except for the NMDAR

scale factor. One network encodes elapsed time relative to a

learned interval. The other decides which of two stimuli has

more evidence. As climbing activity evolves in the timing

network, it governs the rate of downstream decision processing

by gain modulation. To trade speed and accuracy, the timing

network simply imposes different temporal constraints on the

decision network. The model’s activity and behaviour are

consistent with a large body of electrophysiological and

behavioural data from timing and decision tasks, as well as

the hypothesis that cortical circuitry is canonical (see [19]). In

our opinion, these results should be expected of a generally

uniform structure that evolved to provide a model for action in a

spatiotemporal world.

Methods

To address the hypotheses that generic local-circuit processing

is sufficient to support timing in the hundreds of milliseconds

range (see [17,18]) and that these temporal codes control the

speed and accuracy of decisions [11], we simulated each of two

local cortical circuits with a spiking-neuron implementation [20–

26] of a model widely used in population and firing rate

simulations of cortical circuits [27–29]. This class of model

assumes a columnar structure, where a spatial continuum of bell-

shaped population codes (bumps) is supported by net excitation

between adjacent columns and net inhibition between distal

columns. To emphasize the robustness of the principles under-

lying our hypotheses, the only differences between the two

networks were their stimulus-selectivity and the strength of

NMDAR conductance. The scaling of NMDAR conductance is

an established mechanism for controlling intrinsic dynamics in

these and related models [21,26,30,31] and a potential biological

correlate is provided in the Discussion, but our hypothesis does

not require this specific mechanism, e.g. scaling the strength of

feedback inhibition is another approach. As described below, the

timing network had stronger NMDAR conductance, but only the

decision network was selective for stimuli. These differences were

sufficient to determine each network’s function as a timer or

decision maker.

In simulations of an interval estimation task, the timing network

received noisy current injection, simulating synaptic bombardment

from upstream cortical regions, but did not receive any spatially-

selective input. Strong NMDAR conductance at intrinsic synapses

enabled a local sub-population of the network to undergo

‘climbing’ activity (activity buildup) and the time at which this

activity reached a fixed threshold was the network’s estimate of a

given interval (see [32]). Only the timing network was used in this

task.

In coupled-circuit simulations of a decision task, both networks

received noisy current injection, but the decision network received

two noisy, spatially-selective inputs and its task was to decide

which was stronger. It also received spatially non-selective input

from the timing network, i.e. every neuron in the timing network

projected uniformly to every neuron in the decision network.

Spatially non-selective input to recurrent networks is an estab-

lished form of gain modulation [33], where the magnitude of a

selective neural response is modulated by a second source of input

(see [34,35] and Figure 1C). Temporal constraints encoded by

climbing activity upstream thereby modulated the rate of

downstream decision processing. Note that we use the terms

climbing activity and ascending activity interchangeably, and we

use the term ramping to refer to ascending or descending activity

(see the Discussion).

The network model
The local circuit model is a fully recurrent network of leaky

integrate-and-fire neurons [36], comprised of Np~1000 simulated

pyramidal neurons and Ni~250 fast-spiking inhibitory interneu-

rons. For pyramidal-to-pyramidal synapses, W is a Gaussian

function of the distance between neurons arranged in a ring. The

weight Wi,j between any two pyramidal neurons i and j is

therefore given by

Wi,j~e{d2=2s2
, ð1Þ

where d~min(Di{jDDx,2p{Di{jDDx) defines distance in the ring,

Dx~2p=Np is a scale factor, and s~0:5, depicted on the right

side of Figure 1A. The biological basis of W is the probability of

lateral synaptic contact between pyramidal neurons, generally

found to be monotonically decreasing over a distance of *0:5mm
in layers 2/3 and 5 [37,38]. Width parameter s~0:5 therefore

corresponds to approximately 0:25mm axially in cortical tissue,

consistent with cortical tuning curves [39,40]. Like earlier authors

(e.g. [21,24]), we do not attribute biological significance to the

spatial periodicity of the network; rather, this arrangement allows

the implementation of W with all-to-all connectivity without

biases due to asymmetric lateral interactions between pyramidal

neurons. Synaptic connectivity from pyramidal neurons to

interneurons, from interneurons to pyramidal neurons, and from

interneurons to interneurons is unstructured in the network, so for

each of these cases, Wi,j~1 for all i and j.

Each model neuron is described by

Cm
dV

dt
~{gL(V{EL){I , ð2Þ

where Cm is the membrane capacitance of the neuron, gL is the

leakage conductance, V is the membrane potential, EL is the

Author Summary

Studies in neuroscience have characterized how the brain
represents objects in space and how these objects are
selected for detailed perceptual processing. The selection
process entails a decision about which object is favoured
by the available evidence over time. This period of time is
typically in the range of hundreds of milliseconds and is
widely believed to be crucial for decisions, allowing
neurons to filter noise in the evidence. Despite the
widespread belief that time plays this role in decisions
and the growing recognition that the brain estimates
elapsed time during perceptual tasks, few studies have
considered how the encoding of time effects decision
making. We propose that neurons encode time in this
range by the same general mechanisms used to select
objects for detailed processing, and that these temporal
representations determine how long evidence is filtered.
To this end, we simulate a perceptual decision by coupling
two instances of a neural network widely used to simulate
localized regions of the cerebral cortex. One network
encodes the passage of time and the other makes
decisions based on noisy evidence. The former influences
the performance of the latter, reproducing signature
characteristics of temporal estimates and perceptual
decisions.
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equilibrium potential, and I is the total input current. When V
reaches a threshold qv, it is reset to Vres, after which it is

unresponsive to its input for an absolute refractory period of tref .

For pyramidal neurons, Cm~0:5nF, gL~25nS, EL~{70mV,

qv~{50mV, Vres~{60mV and tref ~2ms. For interneurons,

Cm~0:2nF, gL~20nS, EL~{70mV, qv~{50mV,

Vres~{60mV and tref ~1ms [21].

Excitatory currents from pyramidal neurons were mediated by

AMPA receptor (AMPAR) and NMDAR conductances, and

inhibitory currents from interneurons were mediated by GABA

receptor (GABAR) conductances (Figure 1B). The total input

current to each neuron i is given by

Ii~Irec
AMPA,izIrec

NMDA,izIrec
GABA,izIbg,i, ð3Þ

Figure 1. Local-circuit cortical model. (A) Fully recurrent network of pyramidal neurons (white circles with black projections) and inhibitory
interneurons (grey filled circles with grey projections). The 4/1 ratio of pyramidal neurons to interneurons preserves the population sizes in the
spiking model (1000/250). The strength of synaptic conductance between pyramidal cells is a Gaussian function of the spatial distance between them
(Equation 1), depicted by the Gaussian curve on the right hand side. (B) Intrinsic AMPAR (negative, light grey), NMDAR (negative, dark grey) and
GABAR (positive, black) currents onto a pyramidal neuron (solid curves) and onto an interneuron (dotted curves) during the background state. (C)
Gain modulation of the decision network by the timing network (cNMDA~1) in a trial with only one stimulus for the purpose of demonstration. The
stimulus was centred on pyramidal neuron 500. The grey curves show the mean spike density function (SDF, see Methods) over the downstream
network during the first 250 ms of the trial. The black curves show the mean SDF over the last 250 ms. As climbing activity evolves in the timing
network, the response to the stimulus in the downstream network increases without a change to stimulus selectivity. Smooth curves are Gaussian fits
to the noisy curves.
doi:10.1371/journal.pcbi.1003021.g001
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where Irec
AMPA,i, Irec

NMDA,i and Irec
GABA,i are the summed AMPAR,

NMDAR and GABAR currents from intrinsic (recurrent) synap-

ses, and Ibg,i is background noise, described below. These intrinsic

currents are defined by

Irec
AMPA,i~

P
j GAMPA

: gAMPA,j(Vi{VE) : Wi,j

I rec
NMDA,i~

P
j cNMDA

: GNMDA
: gNMDA,j(Vi{VE) : Wi,j

: gi

I rec
GABA,i~

P
j GGABA

: gGABA,j(Vi{VI ),

ð4Þ

where GAMPA, GNMDA and GGABA are the respective strengths of

AMPAR, NMDAR and GABAR conductance, VE~0mV is the

reversal potential for AMPARs and NMDARs and VI~{70mV
is the reversal potential for GABARs [21]. AMPAR and GABAR

activation (proportion of open channels) are described by

dgAMPA

dt
~{

gAMPA

tAMPA

zd(t{tf )

dgGABA

dt
~{

gGABA

tGABA

zd(t{tf ),

ð5Þ

where d is the Dirac delta function and tf is the time of firing of a

pre-synaptic neuron. For NMDAR activation, gNMDA has a slower

rise and decay and is described by

dgNMDA

dt
~{

gNMDA

tNMDA

zaNMDA
: vNMDA(1{gNMDA), ð6Þ

where aNMDA~0:5kHz controls the saturation of NMDAR

channels at high pre-synaptic spike frequencies [21]. The slower

opening of NMDAR channels is captured by

dvNMDA

dt
~{

vNMDA

tv
zd(t{tf ), ð7Þ

where tv was set to 2ms [21]. The voltage-dependence of

NMDARs is captured by g~1=½1zMg : exp({0:062 : V )=
3:57�, where Mg~1mM describes the extracellular Magnesium

concentration and V is measured in millivolts [41]. The scale

factor cNMDA is described below.

The time constants and conductance strengths of AMPAR,

NMDAR and GABAR synapses onto cortical pyramidal neurons

and inhibitory interneurons vary according to tissue preparation,

recording method, species, cortical layer, and to some degree,

cortical area within a species or layer. En masse, electrophysiological

data provide reasonable guidelines for these parameters, but we

emphasize that nothing in the model is fine tuned and our results

hold for a broad range of parameters. For AMPAR-mediated

currents, GAMPA~0:125nS and tAMPA~4ms at synapses onto

pyramidal neurons, and GAMPA~0:25nS and tAMPA~2ms at

synapses onto interneurons, producing fast-decaying monosynaptic

AMPAR currents on the order of 10pA [42,43] that are stronger

and faster onto inhibitory interneurons than pyramidal neurons

[44–46]. For NMDAR-mediated currents, GNMDA~2:5nS and

tNMDA~50ms at synapses onto pyramidal neurons, and

GNMDA~1:25nS and tNMDA~25ms at synapses onto interneu-

rons, producing slow-decaying monosynaptic NMDAR currents on

the order of 10pA [42,47] that are stronger and slower at synapses

onto pyramidal neurons than interneurons [46]. Our excitatory

synaptic parameters thus emphasize fast inhibitory recruitment in

response to slower excitation (see [48] for discussion). For GABAR-

mediated currents, GGABA~2:5nS and tGABA~10ms at synapses

onto pyramidal neurons and GGABA~1:25nS and tGABA~10ms at

synapses onto interneurons [49,50], producing monosynaptic

GABAR currents several times stronger than the above excitatory

currents, where stronger conductance onto pyramidal cells was

meant to reflect the greater prevalence of GABAR synapses onto

pyramidal cells than interneurons [51]. See Figure 1B for exemplary

synaptic currents in the model.

Background activity. For each neuron, current Ibg simulates in

vivo cortical background activity by the point-conductance model of [52]:

Ibg~ge(t)(V{Ve
syn)zgi(t)(V{Vi

syn), ð8Þ

where reversal potentials Ve
syn~0mV and Vi

syn~{70mV are given

the same values as those for excitatory and inhibitory synapses in

Equation 4. The time-dependent excitatory and inhibitory conduc-

tances ge(t) and gi(t) are updated at each timestep Dt according to

ge(tzDt)~g0
ez½ge(t){g0

e � : e{Dt=tezAeU ð9Þ

and

gi(tzDt)~g0
i z½gi(t){g0

i � : e{Dt=ti zAiU ð10Þ

where g0
e and g0

i are average conductances, te and ti are time

constants, U is normally distributed random noise with 0 mean and

unit standard deviation. Amplitude coefficients Ae and Ai are

defined by

Ae~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dete

2
1{exp

{2Dt

te

� �� �s
ð11Þ

and

Ai~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Diti

2
1{exp

{2Dt

ti

� �� �s
, ð12Þ

where De~2s2
e=te and Di~2s2

i =ti are noise ‘diffusion’ coeffi-

cients. See [52] for the derivation of these equations. We followed

Table 1 of [52] for parameter values te~5ms, ti~7:5ms, se~5nS
and si~7:5nS for pyramidal neurons and interneurons and

g0
e~10mS for pyramidal neurons. We gave nominal values to g0

e

for interneurons and to g0
i for pyramidal neurons and interneurons,

setting these conductances to 2:5 mS, i.e. the network’s intrinsic

connectivity was sufficient to mediate realistic levels of inhibitory

background activity onto pyramidal neurons and excitatory and

inhibitory background activity onto interneurons.

Population activity
In both simulated tasks, performance was determined by the

mean activity of localized populations of neurons. Spike density

functions (SDF, rounded to the nearest millisecond) were therefore

built for these neurons by convolving their spike trains with a rise-

and-decay function

(1{exp({t=tr)):exp({t=td )=(t2
d=(trztd )),

where t is the time following stimulus onset and tr~1ms and

td~20ms are the time constants of rise and decay respectively

Trading Speed and Accuracy by Coding Time
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[53]. In the interval estimation task, it was necessary to first

identify the relevant population (the bump population) before

averaging its activity. To this end, we built SDFs for all pyramidal

neurons in the network and the neuron with the highest mean

SDF over the full trial was considered the centre of the bump. We

included 80&s=Dx neurons on either side of this centre in the

bump population. In the decision task, the centres of the response

fields for the competing stimuli were pre-determined, so SDFs

were constructed for these neurons, as well as the 80 neurons on

either side. All simulations were run with timestep Dt~0:25ms
and the standard implementation of Euler’s forward method.

Reduction of the network to an integral and partial
differential system

To investigate the mechanism by which the timing network

produced climbing activity, we simplified the network to an equivalent

integral and partial differential system using a Wilson-Cowan type

approach [27,54]. We then used methods for the study of non-linear

dynamics and stochastic processes to analyse the reduced system.

Because pyramidal-to-pyramidal synaptic connectivity is structured

and all synaptic connections with interneurons are unstructured, the

firing rate of pyramidal neurons and interneurons can be modelled as

tp

drp(x,t)

dt
~{rp(x,t)zW½Isyn,p(x,t)� ð13Þ

and

ti
dri(t)

dt
~{rp(t)zW½Isyn,i(t)� ð14Þ

where (as above) x denotes spatial location and W½Isyn� is the activation

function

W½Isyn�~
cp=iIsyn,p=i{Ip=i

1{exp½{gp=i(cp=iIsyn,p=i{Ip=i)�
, ð15Þ

with gain factor cp=i and noise factor gp=i. The synaptic current at

pyramidal neurons at location x is Isyn(x,t) and consists of AMPAR-,

NMDAR- and GABAR-mediated synaptic currents and background

current, i.e. Isyn,p(x,t)~Irec
AMPA(x,t)zIrec

NMDA(x,t)zIrec
GABA(x,t)z

Ibg(x,t). The first three of these currents can be approximated as

Irec
AMPA(x,t)~Gr

AMPA

Ð 2p

0
W r(x{x’)gr

AMPA(x’,t)dx’

Irec
NMDA(x,t)~Gr

NMDA

Ð 2p

0
W r(x{x’)gr

NMDA(x’,t)dx’

Irec
GABA(x,t)~Gr

GABAwp,i
r
GABA

ð16Þ

where Gr
AMPA, Gr

NMDA and Gr
GABA describe the effective synaptic

strength. Superscripts ‘r’ denote the correspondence of terms in the

‘reduced’ system with those in the timing network. The synaptic

currents onto interneurons are similar. Synaptic activation is

described by gr
AMPA, gr

NMDA and gr
GABA, obeying the dynamics

dgr
AMPA(x,t)

dt
~

{gr
AMPA(x,t)

tAMPA

zrp(x,t)

dgr
NMDA(x,t)

dt
~

{gr
NMDA(x,t)

tNMDA

zC½1{gr
NMDA(x,t)�rp(x,t)

dgr
GABA(t)

dt
~

{gr
GABA(t)

tGABA

zri(t):

ð17Þ

Because the NMDAR time constant is much longer than the

respective time constants of AMPARs, GABARs and neuronal

firing rates (Equations 13 and 14), these last three variables can be

given their steady state values, while NMDAR activation dominates

the dynamics of the system. Thus, the system can be described by

gr
AMPA(x,t)~tAMPArp(x,t)~tAMPAW½Ip(x,t)�

gr
GABA(t)~tGABAri(t)~tGABAW½Ii(t)�

gr
NMDA(x,t)

dt
~{

gr
NMDA(x,t)

tNMDA

zC½1{gr
NMDA(x,t)�rp(x,t):

ð18Þ

By further linearizing the activation function of the interneurons

ri(t)~W½Ii(t)�&aIi(t)zb, we obtain the integral and partial

equation to approximate the timing network:

Lgr
NMDA(x,t)

dt
~{

gr
NMDA(x,t)

tNMDA

z½1{gr
NMDA(x,t)�Crp(x,t)

rp(x,t)~W½Isyn(x,t)�~ cpIsyn,p(x,t){Ip

1{exp½{gp(cpIsyn,p(x,t){Ip)�

Isyn(x,t)~Gr
NMDA

Ð 2p

0
W r(x{x’)gr

NMDA(x’,t)dx’

{Geie

Ð 2p

0
gr

NMDA(x’,t)dx’zI0(x)

~
Ð 2p

0
½Gr

NMDAW r(x{x’){Geie�gr
NMDA(x’,t)dx’zI0(x)

~
Ð 2p

0
W r(x{x’)gr

NMDA(x’,t)dx’zIbackzInoise

W r(x{x’)~a½Gr
NMDA½G{z(Gz{G{)exp({ (x{x’)2

2s2
w

)�{Geie�

ð19Þ

The chosen parameters were sw~0:5236 (300), C~1:282=1000,

Gz~1:6, G{~0:9, a~0:6, cp~320(VnC){1, Ip~125Hz,

Table 1. Parameters for the probability density of first
passage times.

Gr
NMDA x0 xth l

5:5 0:0456 0:478 0:00415

5:6 0:0771 0:375 0:00601

5:7 0:0993 0:345 0:00814

5:8 0:116 0:292 0:0106

5:9 0:129 0:246 0:0134

6:0 0:139 0:203 0:0168

6:1 0:148 0:161 0:0209

6:2 0:155 0:117 0:0259

Parameter values for the probability density of first passage times, plotted in
Figure 7. Gr

NMDA : NMDAR conductance strength; x0 : initial state; xth : timing
threshold in terms of NMDAR activation; l: largest positive eigenvalue.
doi:10.1371/journal.pcbi.1003021.t001
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gp~0:16s, tNMDA~50ms, tAMPA~2ms, Geie~6:8, Iback~0:4.

Scale factors a, Gz and G{ were used to tune the model to

qualitatively reproduce the steady state firing rates in the timing

network, while Geie abstracts over the unstructured interactions

between pyramidal neurons and interneurons.

Results

We used the generic local-circuit model to simulate an interval

estimation task, where intervals were estimated by the time that

climbing activity crossed a fixed threshold. We coupled two

instances of the local-circuit model to simulate a decision task,

where the timing network governed the rate at which the decision

network distinguished between two stimuli. As described above,

the decision network was identical to the timing network, including

all parameter values except for NMDAR conductance strength.

Our results proceed as follows: (1) we show that climbing activity

in the timing network is controlled by the strength of NMDAR

conductance, encoding intervals by the time it takes to reach a

fixed threshold. We explain the mechanism underlying this

phenomenon by dynamic analysis of the reduced system. (2) We

show that the interval estimates by the timing network conform to

the scalar property of interval timing, a widely observed

experimental phenomenon in which the standard deviation of

interval estimates scales linearly with the mean [13,55]. We

explain how the scalar property emerges from the timing network

by deriving the probability density of first passage times of the

timing threshold. (3) We show that a simple learning rule is

sufficient for the timing network to learn to estimate different

intervals in the hundreds of milliseconds range. (4) We demon-

strate several biologically plausible mechanisms for starting and

stopping interval estimates by the timing network, each of which

qualitatively reproduces electrophysiological data from tasks with a

timing requirement. (5) We demonstrate that the timing network

controls the SAT in the downstream decision network, using a

biologically plausible means of gain modulation. (6) We show that

the resulting distribution of decision times reproduces signature

characteristics of decision times by experimental subjects.

Interval estimates are controlled by NMDAR conductance
strength in the timing network

We simulated an interval estimation task with the generic local-

circuit model. Estimates of different intervals were produced by

scaling the conductance strength of NMDARs by 0:675ƒcNMDA

ƒ1:5, where different values of cNMDA supported different rates of

buildup of activity by the bump population. On each trial, the time at

which the mean SDF of the bump population reached a threshold of

20Hz was considered the interval estimate. Thus, like earlier authors

(e.g. [56,57]), we assume that a behaviourally relevant ballistic process

is initiated downstream when neural activity encoding the interval

estimate reaches a certain firing rate. The task was simulated by

running the network for 3:5s, sufficient time for a bump to develop

for all of the above values of cNMDA on at least 95% of trials. This

length of time may seem long for estimates in the hundreds of

milliseconds range, but for longer interval estimates, it allowed for the

growing variability of estimates with interval duration, commonly

seen in interval estimates in experimental tasks (see Results section

The scalar property of interval timing). For cNMDAv0:675, bumps did not

consistently develop within the allotted time, and for those that did,

spiking activity did not consistently reach 20Hz. For cNMDAƒ0:6,

background spiking was approximately 1Hz among pyramidal

neurons and 4Hz among interneurons [58], but climbing activity was

not supported by the network. An upper limit of cNMDA~1:5 was

used because it is consistent with the experimental enhancement of

the NMDAR component of cortical excitatory post-synaptic currents

by approximately 150% of baseline [59,60] and because interval

estimates were increasingly indistinguishable above this value. 250
trials were run for each value of cNMDA.

Varying the scale factor cNMDA furnished a range of rates of

buildup activity, where lower values of cNMDA lead to slower

buildup and higher values lead to faster buildup. The lowest value

of cNMDA that consistently supported buildup activity produced a

mean interval estimate of 1:59s (cNMDA~0:675). The highest

value of cNMDA consistent with experimental enhancement of

cortical EPSCs [59,60] produced a mean estimate of 209ms
(cNMDA~1:5). The timing network thus supported interval

estimates from approximately 200ms to 1500ms, consistent with

experimental evidence that temporal coding on this order is

supported by a common mechanism [12,55]. Example trials for

three values of cNMDA are shown in Figure 2. Note that the

location of the bump differs on each trial, as there is no bias

favouring a particular network location. We are unaware of any

data to conclusively confirm or refute such trial-to-trial variability,

but to produce climbing activity in the same sub-population from

trial to trial, we simply need to strengthen excitatory synaptic

conductances among a few localized neurons, e.g. by Hebbian long

term potentiation among the neurons participating in the bump.

In the coupled-circuit decision trials in Section Encoding time

constraints for a decision, the location of climbing activity in the timing

network does not matter because projections from the timing

network to the decision network are spatially non-selective.

The mechanism underlying climbing activity in the timing

network can be understood by non-linear analysis of the reduced

integral and partial differential system. For a given value of the

effective synaptic strength Gr
NMDA, corresponding to NMDAR

conductance strength in the timing network, the steady states of the

reduced system can be calculated by setting the right hand side of

Equation 19 to zero and solving the resulting equations. Our

analysis revealed three regimes of the reduced system. 1) Sufficiently

small values of Gr
NMDA furnished a flat steady state which is stable

and whose eigenvalues are negative. This regime corresponds to the

common case in cortex, where background activity is stable and

stimulus-selective activity decays to this background state after

stimulus offset. This regime in the reduced system corresponds to

approximately cNMDAv0:575 in the timing network. 2) With a

moderate increase in Gr
NMDA, the system enters a bistable regime.

The stable flat steady state is retained, but a small unstable bump

steady state and a large stable bump steady state emerge. This

bistable regime corresponds to the classic persistent storage regime

in these networks (e.g. [21,26]), in which a stimulus can trigger a

bump state, which persists after stimulus offset. This regime in the

reduced system corresponds to approximately 0:575ƒcNMDA

v0:65 in the timing network. 3) With a further increase in

Gr
NMDA, the stable flat state and the unstable bump steady state

coalesce into one unstable flat steady state whose largest eigenvalue

is positive, while the stable bump state becomes higher. The

magnitudes of the unstable flat steady state and the stable bump

state increase with further increase to Gr
NMDA. This regime in the

reduced system corresponds to approximately 0:65ƒcNMDA in the

timing network. This third regime is shown in Figure 3, where

panels A and B show NMDAR activation at the stable bump state

and the unstable flat steady state respectively with increasing

Gr
NMDA. Panels C and D show the corresponding firing rates rp.

The instantaneous firing rates rp of the stable bump states in the

reduced system were consistent with the steady state spike rates in

the timing network, ranging from approximately 25Hz to 70Hz as

Gr
NMDA was increased from 5:5 to 6:2, corresponding to an increase

in cNMDA from 0:675 to 1:5 in the timing network (Figure 3C). The

Trading Speed and Accuracy by Coding Time
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evolution of the system away from the unstable flat steady state is

dominated by the largest positive eigenvalue and a localized activity

bump emerges due to the corresponding eigenvector (Figure 4). On

the other hand, the largest eigenvalue of the stable bump steady

state is zero and the corresponding eigenvector explains the

invariant location of the bump [61]. Climbing activity therefore

occurs at arbitrary locations, as shown in Figure 2 above.

The scalar property of interval timing
Not only did the timing network produce interval estimates, but

the estimates conformed to the scalar property of interval timing

[62]. The scalar property is a strong form of Weber’s law where the

standard deviation of estimates is proportional to the mean

(Figure 5A). Weber’s law is widely regarded as a signature

characteristic of interval timing across a wide range of temporal

orders [13,55], though see [63] and [64] for a systematic description

of conformities and violations of the scalar property in humans and

non-human animals respectively. The coefficient of variation (CV,

the standard deviation divided by the mean) of the interval estimates

produced by the timing network was approximately constant

(Figure 5B) and compared favourably to experimental measure-

ments on this order [55,65]. The distribution of interval estimates

for each value of cNMDA was roughly normal (Figure 6A), another

widely-reported characteristic of interval estimates across a range of

temporal orders [13,55]. Gaussian fits to the estimates are shown in

Figure 6B. For comparisons with experimental data in the hundreds

of milliseconds range, see e.g. [66] and [67].

Climbing activity in the timing network can be understood as the

evolution of the system from an initial state in the vicinity of the

unstable flat steady state to the stable bump state. We linearized the

system in the vicinity of the unstable flat steady state as

dz

dt
~Azzsj, where z denotes gr

NMDA for simplicity. To consider

the effects of noise, the linear system can be expressed as a Langevin

equation
dz

dt
~Lzzsj, where L is the eigenvalue of the matrix A, z

is a vector, and sj is white noise with standard deviation s.

According to non-linear dynamics, the system expands along the

manifold tangent to the eigenvector with positive eigenvalue. Thus,

we focus on the largest positive eigenvalue, which dominates the

expansion of the system [68], and further simplify the system as a 1-

dimensional Ornstein-Uhlenbeck (OU) process

dz

dt
~lzzsj: ð20Þ

The parameter l of an OU process is typically negative, supporting

a stable distribution. Here, l is positive because the flat steady state

is unstable. Thus, positive l implies that the system departs from the

flat state starting at initial state z0. The corresponding Fokker-Plank

equation can be written as

Lf

Lt
~{l

L
Lz

(zf )z
s2L2

2Lz2
f ð21Þ

Figure 2. Raster plots (left) and mean SDFs over the ‘bump’ population (right) show the timing network coding temporal intervals with
cNMDA~0:8 (top), cNMDA~1 (middle) and cNMDA~1:2 (bottom). Intervals were estimated when the mean SDF of the bump population reached 20 Hz.
In raster plots, pyramidal neurons and inhibitory interneurons are indexed from 1–1000 and 1001–1250 respectively, indicated by the horizontal grey line.
doi:10.1371/journal.pcbi.1003021.g002
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with initial state f (z,0; z0,0)~d(z{z0). The distribution of arrival

times of z at the timing threshold can be calculated as

f (z,t; z0,0)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

ps2(e2lt{1)

s
e
{

l(z{z0elt)2

s2(e2lt{1) , ð22Þ

which shows that the system grows along the curve z0elt with

standard deviation s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2l(t{t0){1

2l

r
.

Intervals are estimated when the system reaches the threshold

zth, so the interval estimates are the first passage times of the OU

process, the distribution of which can be calculated as

p(t)~{
L
Lt

ðzth

{?
f (z,t; z0,t0)dz~½ l

e2lt{1
�3=2

elt

s
ffiffiffi
p
p (zthelt{z0) e

{
l(zth{z0elt)2

s2(e2lt{1)

ð23Þ

with mean mpdf and variance spdf given by

mpdf ~

ð?
0

tp(t)dt~

ð?
0

t½ l

e2lt{1
�3=2

zthe2lt{z0elt

s
ffiffiffi
p
p e

{
l(zth{z0elt)2

s2(e2lt{1) dt

ð24Þ

and

spdf ~

ð?
0

(t{mpdf )2p(t)dt~

ð?
0

(t{md )2

½ l

e2lt
{1�3=2 zthe2lt{z0elt

s
ffiffiffi
p
p

ð25Þ

respectively.

Of note, z0 and zth are the initial value and threshold of

NMDAR activation, (gr
NMDA, Equation 19), not the firing rate. To

Figure 3. Two steady states of the reduced system. (A) NMDAR activation at the stable bump state for synaptic strengths
Gr

NMDA[f5:5,5:6,5:7,5:8,5:9,6:0,6:1,6:2g. Darker curves correspond to higher values of Gr
NMDA (see legend in panel B). (B) NMDAR activation at

the unstable steady state. (C) Firing rates at the stable steady state. (D) Firing rates at the unstable steady state. Shades of grey in B, C and D
correspond to those in A.
doi:10.1371/journal.pcbi.1003021.g003
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calculate the distribution of first passage times numerically, we

need to express the threshold in terms of gr
NMDA. For each value of

Gr
NMDA, we therefore calculated zth by scaling the interval

estimation threshold in the timing network by the ratio of the

maximum values of gr
NMDA and rp, i.e. zth~gr

NMDA=rp
: 20Hz.

This scaling preserves our use of a fixed firing rate threshold in the

timing network. Values for z0, zth and the largest positive

eigenvalue l are given in Table 1 for increasing Gr
NMDA. We

used a constant level of background noise for all simulations

(s~0:0018), consistent with our use of constant parameters with

the background noise (point-conductance) model across the

different values of cNMDA in the timing network.

The distribution of first passage times is shown in Figure 7.

These curves are very similar to the distribution of interval

estimates by the timing network (compare Figures 6B and 7A).

Stronger (weaker) NMDAR conductance causes faster (slower)

ramping and a narrower (wider) distribution, while the relation-

ship between the mean and standard deviation is approximately

linear (compare Figures 5A and 7B).

Learning interval estimates
The previous sections demonstrate that the timing network

estimates intervals in the hundreds of milliseconds range as a

function of the scale factor cNMDA and that these estimates share

signature characteristics with those of experimental subjects in

studies of interval timing. Next, we consider whether the network

can learn a given interval in this range, using a simple learning rule

[57]. We ran the interval estimation task (described above in

Results section Interval estimates are controlled by NMDAR conductance

strength in the timing network) for desired intervals

D[f250,500,750,1000,1250gms. For each desired interval, the

network began the block of trials in the baseline condition

Figure 4. Eigenvectors of the reduced system. The first eigenvector of the unstable flat steady state (A) and stable bump steady state (B).
doi:10.1371/journal.pcbi.1003021.g004
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Figure 5. The interval estimates produced by the timing network conform to the scalar property of interval timing. (A) The standard
deviation over the mean interval produced by the timing network for each value of cNMDA. The plotted line shows the best linear fit (least squares).
(B) Coefficient of variation (CV) over the mean interval for each value of cNMDA. Error bars show 95% confidence intervals. The plotted line shows the
best horizontal linear fit. As the estimates increase in length, the data converge to the slope of the linear fit in A.
doi:10.1371/journal.pcbi.1003021.g005
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(cNMDA~1) and cNMDA was adjusted after each trial n according

to

cNMDA(nz1)~

cNMDA(n)

1zb

cNMDA(n)

1{b

8>><
>>:

for T(n) v D

otherwise
, ð26Þ

where T(n) is the estimate of D on trial n and b~0:025
determines the rate of learning. As shown in Figure 8, the network

learned each interval after a handful of trials [7,32].

Starting and stopping the estimate
Estimates of elapsed time occur relative to a start time, so the

network requires a start signal to begin each estimate. Such a

signal should be able to reset the network to the background state,

regardless of its current state. There are a number of plausible

mechanisms that could play this role. We demonstrate two such

mechanisms. One is a brief pulse of spatially non-selective

excitation, generating blanket feedback inhibition and thus

shutting the network down. This mechanism was demonstrated

in an earlier study simulating persistent mnemonic activity in

prefrontal cortex, using a local-circuit model similar to ours [21].

Figure 6. Interval estimates produced by the timing network. (A) Distribution of intervals produced by the timing network for cNMDA~0:75
(top), cNMDA~1 (middle) and cNMDA~1:5 (bottom). Histogram bins were 50ms. (B) Gaussian fits to the distribution of intervals produced for
cNMDA[f0:675,0:7,0:75,0:8,0:9,1:1,1:5g, the first and last of which correspond to the lowest and highest values of cNMDA (see Methods). (C) Mean
SDFs at the centre of the bump (see Methods) over all trials for the values of cNMDA shown in B.
doi:10.1371/journal.pcbi.1003021.g006
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Figure 9A shows this mechanism in the timing network, where the

average excitatory conductance of the point conductance model

(g0
e ) at pyramidal neurons was increased by a factor of 20 at all

pyramidal neurons for 10ms to start the estimate, and again at

time t~500ms to stop the estimate. In this case, the start signal

potentially corresponds to broad excitation of the timing network

by a cue stimulus, while the stop signal potentially corresponds to

efference copy at the time of motor initiation [22]. As such, we do

Figure 7. The probability density of first passage of the timing threshold by the reduced system. (A) Probability density of interval
estimates for different values of NMDAR conductance strength Gr

NMDA in the reduced system. (B) The standard deviation over the mean for curves
shown in A.
doi:10.1371/journal.pcbi.1003021.g007
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not expect these signals to be identical in duration or magnitude,

but giving them the same parameters shows robustness of the

mechanism (fine tuning of each signal was not necessary).

Electrophysiological data showing a similar trajectory can be seen

in e.g. [69], where these data were interpreted as encoding the

anticipation of an upcoming stimulus.

Another plausible reset mechanism is long-range excitatory

targeting of inhibitory interneurons, which in turn inhibit local

pyramidal neurons [70]. Such disynaptic inhibition has been

suggested to underlie the control of motor initiation in anti-

saccade [71] and countermanding tasks [72] and is simulated in

the timing network in Figure 9B. In this simulation, the average

excitatory conductance of the point conductance model (g0
e ) at

pyramidal neurons was increased by a factor of 5 for 10ms to start

the estimate, and the average excitatory conductance at interneu-

rons was increased by a factor of 5 for 150ms at t~500ms to stop

the estimate. Similar electrophysiological data can be seen in e.g.

[73], interpreted as encoding the anticipation of an upcoming

stimulus in their study. There are, of course, other mechanisms

that could start and stop estimates of elapsed time by climbing

activity. Indeed, we do not expect cortical timing circuits to remain

indefinitely in a regime with no stable background state. For

example, at the onset of a cue stimulus, fast-acting neuromodula-

tion could alter network dynamics in a manner similar to the

scaling of cNMDA, or cortico-thalamo-cortical disinhibition could

have a similar effect.

Encoding time constraints for a decision
To address the hypothesis that the encoding of elapsed time

controls the speed and accuracy of decisions by gain modulation

[11], we ran further simulations to determine if the timing

network’s temporal estimates could control the SAT in a

downstream network during a decision task (Figure 10). As

indicated above, the two networks were identical except for the

inputs they received and the scale factor cNMDA. To emphasize

the role played by the timing network in these simulations, cNMDA

was given a low value in the decision network (0:25, one quarter

of the baseline NMDAR conductance in the timing network for

synapses onto pyramidal neurons and interneurons) so its intrinsic

processing was too weak to make decisions across all task

difficulties without spatially non-selective input from the timing

network. Note that this low value of cNMDA did not support

climbing activity in the absence of selective input. Down-scaling

NMDARs was thus a practical means of limiting the decision

Figure 8. The timing network learns to estimate intervals under the rule given by Equation 26. Black and grey curves correspond to
specified intervals of 250ms and 1250ms respectively. (A) Trial-to-trial fluctuations of cNMDA during learning. (B) Trial-to-trial interval estimates.
doi:10.1371/journal.pcbi.1003021.g008
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network’s processing capability. Although we do not assign it a

specific biological correlate, we note that the properties of

NMDARs can show marked variation between cortical regions

[74] and under receptor modulation within a single region

[60,75].

We simulated a two-choice decision task by providing two noisy

stimuli to the decision network for 2s. On each trial, the network’s

task was to distinguish the higher-rate input (the target) from the

lower-rate input (the distractor). For each stimulus, independent,

homogeneous Poisson spike trains were provided to all pyramidal

neurons in the decision network, where spike rates were drawn

from a normal distribution with mean m corresponding to the

centre of a Gaussian response field defined by exp({d2=2s2).
Constants d and s are given above for the pyramidal interaction

structure W (Methods section The network model). For the target

stimulus, we simulated 100 upstream stimulus-selective neurons

firing at 50Hz each by setting m~500Hz and setting extrinsic

AMPAR and NMDAR conductance strength to 10:GAMPA and

10:GNMDA respectively, trading spatial summation for temporal

summation [76]. The distractor stimulus was similarly defined,

where task difficulty (target-distractor similarity) was determined

by multiplying m~500 by 0:85ƒcextƒ1. On each trial, the

decision was considered correct (incorrect) when the mean SDF of

the target-selective (distractor-selective) population reached a

threshold of 20Hz. As with the interval estimation task, the

threshold assumes a downstream ballistic process is initiated when

neural firing reaches a certain rate, an assumption supported by a

large body of experimental and theoretical work from decision

tasks (see [1,3,77,78]. The time of threshold-crossing was

considered the decision time. Note that the precise value of the

threshold was not crucial.

Gain modulation of the decision network by the timing network

was implemented by spatially non-selective excitation [24,33], that

is, each pyramidal neuron in the decision network received input

from all pyramidal neurons in the timing network for the entirety

of each trial. Only AMPAR conductances mediated these inter-

network inputs, which were set to one fifth the strength of extrinsic

AMPARs.

The total input current to each neuron i in the decision network

was therefore

Ii~Isel
AMPA,izIsel,i

NMDAzItim
AMPA,iz

Irec
AMPA,izIrec

NMDA,izIrec
GABA,izIbg,i,

ð27Þ

where Isel
AMPA,i and Isel

NMDA,i mediate stimulus-selective inputs (set to

0 for interneurons), and Itim
AMPA mediates spatially non-selective

inputs from the timing network (set to 0 for interneurons).

NMDAR and AMPAR activation at these synapses follows

Equations 5 and 6 above.

A block of 6000 decision trials (1000 trials for 6 task difficulties)

was run for values of cNMDA learned by the timing network for a

Figure 9. Starting and stopping the timing network. In raster plots (upper), pyramidal neurons and inhibitory interneurons are indexed from 1–
1000 and 1001–1250 respectively, indicted by the horizontal grey line. Lower plots show mean SDF of the bump population for the same simulations.
See text for simulation details. (A) Brief, spatially non-selective excitation of all pyramidal neurons resets the network, regardless of its current state.
(B) Brief, spatially non-selective excitation and inhibition of pyramidal neurons starts and stops activity in the timing network respectively.
doi:10.1371/journal.pcbi.1003021.g009
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short (250ms) and a long (1000ms) interval (Section Learning interval

estimates above). The mean value of cNMDA over the last 100 trials

was used in each case. Tight and loose temporal constraints were

thus imposed on the decision task by running the timing network

with cNMDA~1:35 and cNMDA~0:725 respectively on each block

of trials, where activity in the timing network served as a spatially

non-selective input to the downstream decision network. In both

temporal conditions, the model was very accurate on the easiest

task (85% mean target-distractor similarity) and performed at

chance when the inputs were indistinguishable on average (100%
mean target-distractor similarity). For task difficulties in between,

decisions were more accurate with the longer temporal estimate.

Decision times were shorter for all task difficulties with the shorter

temporal estimate. The coupled-circuit decision model thus traded

speed and accuracy as a function of a learned interval (Figure 11).

Distributions of decision times under speed and accuracy

conditions. Just as the the timing network reproduced signature

characteristics of interval estimates by experimental subjects, the

coupled-circuit decision network reproduced signature character-

istics of psychophysical data from decision tasks. As described in

[77], these characteristics result from within-block and between-

block experimental manipulations. Our within-block manipulation

is task difficulty (mean target-distractor similarity) and our

between-block manipulation is the imposition of speed and

accuracy conditions by short (250ms) and long (1000ms) interval

estimates respectively.

Figure 10. Gain modulation of the decision network (right) by the timing network (left). (Top row) Each network schematic reproduces
the schematic in Figure 1A. Climbing activity in the timing network provides spatially non-selective input to the decision network, depicted by the
broad arrow. The decision network has Gaussian response fields for the target (T) and distractor (D) stimuli (see Methods), where the thinner arrows
depict incoming evidence. (Middle row) Raster plots for each network during a single trial of the decision task with cNMDA~0:725 and task difficulty
cext~0:95. Pyramidal neurons and inhibitory interneurons are indexed from 1–1000 and 1001–1250 respectively, indicated by the horizontal grey line.
Neurons 250 and 750 are the centres of the target and distractor RFs respectively. (Bottom row) Mean SDFs over the bump population in the timing
network and the target and distractor populations in the decision network (see Methods). Black horizontal lines indicate the 20 Hz threshold used for
interval estimation and decision making in the respective networks. Vertical lines show the time of threshold-crossing.
doi:10.1371/journal.pcbi.1003021.g010
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Figure 11. Temporal estimates by the timing network control the speed-accuracy trade-off in the decision network. Black and grey
curves show results for temporal estimates of 250ms and 1000ms respectively. (A) Accuracy: the proportion of trials on which the decision network
correctly chose the target for each level of task difficulty (target-distractor similarity). Error bars show 95% confidence intervals. (B) Decision time:
mean time of threshold-crossing (20 Hz) by the target or distractor population (see Methods). Error bars show standard error.
doi:10.1371/journal.pcbi.1003021.g011
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Three general within-block findings are identified in [2,77]: (1)

accuracy decreases and reaction times (RT) increase on correct

trials with increasing task difficulty; (2) the shapes of RT

distributions are positively skewed, where on correct trials, the

tail of the distribution grows at a greater rate than the leading edge

with increasing task difficulty; and (3) mean RT differs on correct

and error trials, depending on conditions. All three general

findings are reproduced by the model (Figures 11 and 12), where

we ignore the non-decision component of RT, known to have

minimal effect on RT distributions [79]. As described above,

increasing task difficulty resulted in a decrease in accuracy and an

increase in mean decision time (DT) under both between-block

conditions. Increasing mean target-distractor similarity from 85%
to 97% resulted in a decrease in accuracy from 99:7% to 71:8%
and an increase in mean DT from 242ms to 294ms under speed

conditions; and resulted in a decrease in accuracy from 100% to

78:6% and an increase in mean DT from 371ms to 651ms under

accuracy conditions (Figure 11). Furthermore, under both

between-block conditions, the shapes of DT distributions were

positively skewed (Figure 12A,B) for all task difficulties (not shown),

Figure 12. Distributions of decision times produced by the coupled-circuit model. (A) Normalized cumulative distributions for correct trials
under accuracy conditions. Darker curves correspond to more difficult tasks, determined by mean target-distractor similarity (see legend). (B) Same as
in A, but under speed conditions. Note the different scales of the x-axis in A and B. (C) Decision times at the crossing of quantiles 0.1 and 0.9 of the
distributions for correct trials under accuracy (grey) and speed (black) conditions, plotted as a function of task difficulty. Curves show the best least
squares linear fit, where solid and dashed lines correspond to quantiles 0.1 and 0.9 respectively. Under each condition, the slope of the dashed line
(38.6 grey, 5.8 black) is greater than that of the solid line (8.5 grey, 2.1 black), indicating that the tail of the distribution is growing more than the
leading edge as difficulty increases. (D) Mean decision times on correct (solid) and error (dotted) trials under accuracy (grey) and speed (black)
conditions. Error bars show standard error.
doi:10.1371/journal.pcbi.1003021.g012
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the tail of the DT distribution for correct trials grew at a greater

rate than the leading edge with increasing task difficulty

(Figure 12C, see caption), and error trials were systematically

longer than correct trials (Figure 12D).

Discussion

Over the past several decades, a wealth of data and theory have

characterized the cortical mechanisms underlying decisions for

action in the world, such as where in space to foveate or to reach

(see [1,3]). In this characterization, time is a passive vehicle for the

filtering of noisy spatial codes (see [4]). Recently, there has been

increasingly broad recognition that the encoding of time is an

essential determinant of behaviour [12,13,32,55,80,81]. It would,

after all, be impossible to plan actions or anticipate upcoming

events without a representation of time. Psychophysical studies

have characterized temporal coding for decades [62,67,82,83] and

a growing body of electrophysiological [73,84–89], neuroimaging

[90,91], and theoretical [56,57,92–96] studies have begun to

reveal the neural mechanisms underlying the representation of

time. Despite these developments, very few studies have consid-

ered the interactions between spatial and temporal codes for

perception, decision and action [8–11].

Using a generic, local-circuit cortical model, we have proposed

a neural mechanism for the encoding of time in the hundreds of

milliseconds range. Climbing activity in the model resembles

neural activity in a number of cortical regions during experimental

tasks with a timing requirement in this range [9,69,73,84–89] and

our analysis of network dynamics formally characterizes the

underlying mechanism. Strong feedback excitation destabilizes the

network’s background state, repelling the network toward a stable

attractor. Because the dynamics evolve more quickly with stronger

feedback excitation, estimates are shorter with stronger intrinsic

NMDAR conductance. The model’s interval estimates conform to

Weber’s law, widely observed experimentally (Figures 6 and 5) and

the CV of the these estimates is consistent with that of

experimental subjects in timing tasks in the same range

(Figure 5). Our derivation of the probability density of interval

estimates reveals Weber’s law as a mathematical property of the

proposed timing mechanism (Figure 7). A simple learning rule is

sufficient for the network to learn new intervals within a handful of

trials (Figure 8), as observed across experimental paradigms and

species [7], and we have demonstrated plausible mechanisms for

starting and stopping the estimates (Figure 9). Consistent with the

hypothesis that generic properties of local cortical circuits support

spatial and temporal processing [12], an identical downstream

network makes decisions in simulations of a perceptual discrim-

ination task, producing psychometric and chronometric curves

consistent with experimental data (e.g. [9,97,98]) and demonstrat-

ing the SAT as a function of the learned temporal estimates

upstream (Figure 11).

The representation of time in the hundreds of
milliseconds range

Different neural mechanisms are expected to code for widely

varying temporal durations, ranging from microseconds to days

[12,13]. While considerable overlap between mechanisms is

expected at timescales in between, it has been proposed that a

dedicated mechanism exists for the hundreds of milliseconds range

(see [55,67]), the relevant order for the most well-studied

perceptual decision tasks [1,3,14]. These proposals are based on

the premise that a single mechanism encoding time for different

tasks and modalities will show common variability in these

different contexts. For example, [55] suggested a dedicated timing

mechanism in this range based on pooled data from a variety of

tasks and species showing a similar CV from approximately 200 to

1500 ms (much like Figure 5B). Along similar lines, [82] described

a constant Weber fraction for 200 to 2000 ms. [83] used the slope

analysis method to distinguish timing-based variability from non-

timing sources of variability, such as variability due to perceptual

and motor processing during timing tasks. Under this approach,

the slope of the linear fit to the variance plotted over the square of

interval durations reveals the time-dependent process, shown in

their study to be similar for intervals from 325 to 550 ms in two

timing tasks. [67] showed a common slope under this method for

several auditory tasks requiring interval estimates from 350 ms to

1 s, though they also showed significantly different slopes for other

auditory tasks, visual tasks, and between auditory and visual

implementations of the same task. See their study for a more

extensive description of the evidence for and against a common

timer in this range.

In consideration of the above, it is important to distinguish

between a common mechanism for timing and a common timer. A

common timer refers to a ‘central clock’ processing time across a

set of modalities and tasks. Inherent in this definition is a common

mechanism, but a common mechanism does not necessarily imply

a common timer. We propose that the capability to code time in

the hundreds of milliseconds range is a generic property of local

cortical circuits under conditions supporting strong attractor

dynamics, but this capability does not imply that any single circuit

should code time for all tasks and modalities, nor that all local

cortical circuits should code time.

Our model fits a distributed processing framework, with local

circuits coding time in various cortical regions across different tasks

and modalities, supported by inherent properties of local-circuit

cortical processing [95,99]. There is considerable debate about the

strength of evidence supporting distributed vs. central timers for

different temporal durations, modalities and tasks (see

[15,17,90,100]), but the growing volume of neural data showing

climbing activity in the hundreds of milliseconds range in different

cortical regions during tasks with a timing requirement provides

strong support for a distributed framework. For example, climbing

activity in this range has been recorded in several regions of

prefrontal cortex, including lateral [69,73], anterior cingulate

[84,101] and premotor [85] regions in anticipation of upcoming

events; as well as in parietal areas 7A [86] and LIP [9,87,102].

Similar activity has been recorded in anticipation of reward in

primary visual cortex [88], in the timing of movements in the

absence of environmental cues in LIP [89], and in the midbrain

superior colliculus during predictable delays [103]. Furthermore,

many of these data showed a phasic response at the start of the

anticipatory periods, suggesting a reset mechanism (Figure 9) that

would allow for the encoding of elapsed time relative to a start

time (e.g. [69,73,88,89]). It is important to note, however, that in a

hierarchical cortical framework, one or several local circuits could

conceivably encode time at the top of the hierarchy for use in more

peripheral processing, i.e. despite favouring a distributed frame-

work, we acknowledge that our model could also support a

centralized framework.

Prospective and retrospective coding
We have focused on the representation of time in the hundreds

of milliseconds range by climbing activity, but climbing activity is

not limited to the hundreds of milliseconds range, nor is climbing

activity the only neural data indicative of temporal coding on this

order. Such activity is generally regarded as ‘prospective’ coding

[73,104], i.e. neural activity encoding elapsed time in anticipation

of an upcoming stimulus or in the timing of an upcoming action.

Trading Speed and Accuracy by Coding Time
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In addition to the range of hundreds of milliseconds, such activity

has been recorded in several cortical and subcortical regions in the

range of a few seconds, including primary motor and premotor

[105] and prefrontal [106,107] cortices, as well as the thalamus

[104]. Some of these data follow a very similar trajectory to those

in the hundreds of milliseconds range and a clear distinction

between the neural mechanisms coding for similar ranges is not

expected [12]. Under our parameters, mean estimates are limited

to approximately 1:5s, but alternative parameters may furnish

estimates of several seconds, potentially unifying some of these

data in terms of their underlying mechanism.

Descending neural activity is arguably just as common as

climbing activity and is generally regarded as ‘retrospective’

coding (see [7,73,108]), i.e. neural activity encoding the time since

some previous occurrence. In the context of interval timing, the

relevant interval can be estimated when the descending activity

reaches baseline from an elevated firing rate, initiated by a

stimulus (see [32,96]). Such activity has been recorded in many of

the same cortical regions as climbing activity, often in the same

experiments (e.g. [73,88,101,107]). Other neural data suggest

alternative mechanisms for temporal coding in the hundreds of

milliseconds range, for example, [109] recorded phasic neural

activity in prefrontal cortex, where the firing rate correlated with

the length of a preceding interval. In the range of a few seconds,

[110] showed that interval recognition and production were

predominantly mediated by different PFC neurons, where the

latter showed an increase and subsequent decrease in firing rate

before subjects indicated their temporal estimates.

Comparison with earlier neural models of interval timing
A number of neural models have offered mechanistic explana-

tions for temporal coding in recent years. These models can be

distinguished along several dimensions, including the temporal

range for which they code, the neural and behavioural data for

which they provide a mechanistic explanation, the characteriza-

tion of their dynamics, and whether they function by intracellular

or network mechanisms. Most models addressing temporal coding

in the range of hundreds of milliseconds to a few seconds are

grounded in ascending (climbing) or descending (decaying) neural

activity. Several such models have encoded time by neural decay

[92,96], i.e. if a stimulus elicits a neural response, then the time

after stimulus offset is implicit in the level of activity remaining.

Regenerative mechanisms such as recurrent synaptic processing

yield network time constants much longer than the time constants

of contributing biophysical processes, such as those of membranes

and synapses [11,30,31], so these temporal codes are not limited to

the tens of milliseconds range. Stronger (weaker) intrinsic synapses

thus support longer (shorter) temporal estimates, which can be

learned by synaptic plasticity [96].

With sufficiently strong recurrent processing, neural activity

becomes stable after stimulus offset, i.e. attractor states are

supported and timing by neural decay is no longer possible. Just

outside the attractor regime, however, intervals can be estimated

by the time of collapse of quasi-stable activity [93], including

compliance with the scalar property [111]. Like our model, this

approach makes use of quasi-bistable dynamics, where time is

coded by the time of transition from one state to another. The

obvious difference between these collapsing-activity models and

our model is the direction of state change, but another important

difference is the rate of state transitions by individual neurons,

described below.

Neural models have simulated ascending activity by a variety of

mechanisms, most of which involve attractor dynamics in one

form or another. For example, attractor dynamics enable a

stimulus-selective population to store the representation of a start

cue after its offset, and several models have used such stable,

persistent activity as a source of input for the production of

climbing activity in a downstream excitatory population. Different

models have demonstrated different mechanisms to produce the

climbing activity, including slow integration by recurrent synaptic

processing [112], short term facilitation at feedforward and

recurrent synapes onto excitatory neurons [113], and short term

depression at feedforward synapses onto inhibitory interneurons

that project to the downstream excitatory population, providing

gradual disinhibition [94]. The idea that time can be estimated by

integrating regular neural activity has long been deployed in clock-

counter models (a.k.a. pacemaker-accumulator models), including

recent models proposing neural correlates for the required

components: an oscillator to provide regular pulses, an integrator

to count them, a store to hold a sample interval in memory for

comparison with an evolving estimate, and a gate for starting and

stopping the timing process (see [114] for extensive review). These

models have commonly addressed intervals in the seconds to

minutes range and we do not further discuss them here. Suffice to

say, persistent mnemonic activity plays a comparable role to the

oscillator in models that estimate intervals by the integration of this

input to produce climbing activity. The level of background input

has been used to similar effect, where stronger (weaker) input

produces climbing activity with a steeper (shallower) slope,

reaching the threshold sooner (later) and thus estimating shorter

(longer) intervals [57,115]. This mechanism pre-supposes an

additional upstream time-sensitive mechanism to govern the

strength of input, but differential rates of persistent mnemonic

activity in parametric working memory tasks [107] and task-

dependent modulation of background cortical spike rates [116]

suggest that such a mechanism is plausible. Alternatively, different

rates of climbing activity can be produced with a constant mean

input if the input variance is integrated [117] or by modulation of

recurrent network dynamics, as is the case here.

Providing persistent inputs to integrators is not the only role

played by attractor dynamics in models that estimate intervals by

climbing to threshold. Indeed, the integrators often utilize

attractor dynamics. These models can be differentiated by their

number of stable or quasi-stable states and the transitions between

them. In neural models incorporating cellular bistability, individ-

ual neurons switch rapidly from a down-state, characterized by

low rate spiking activity or membrane potential, to an up-state

(high rate or membrane potential) when triggered by sufficiently

strong input current. Climbing activity occurs if the probability of

switching increases with the number of up-state neurons [57],

where excitatory recurrent processing creates an avalanche effect

in network models [115]. As such, these models assume that

climbing activity does not reflect a true gradient of spike rates, but

rather, reflects the average of a population of binary neuronal

states. This characterization of climbing activity is different from

that of our model, where individual neurons in the bump

population traverse a gradient of firing rates while climbing to

threshold. We confirmed this gradient with the interspike interval

(ISI) analysis in [103], where graded firing rates are revealed by a

decreasing mean ISI over time and a positively-skewed, unimodal

ISI distribution. For all values of the scale factor cNMDA, all of

these conditions were satisfied in the model (not shown, uni-

modality determined by Hartigan’s dip test). See [103] for details

of the analysis. Our model thus makes the testable prediction that

neurons undergoing climbing activity during tasks with a timing

requirement will show gradual increases in their firing rates, rather

than abrupt transitions.

Trading Speed and Accuracy by Coding Time
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Like our model, the single-cell model by [56] codes time by

climbing to threshold with a true gradient of firing rates. Unlike

our model, Durstewitz’s model estimates intervals from hundreds

of milliseconds to tens of seconds, doing so by an intracellular

positive feedback loop between firing rate, voltage-gated calcium

influx, and calcium-dependent inward depolarizing current. As

described above, fine tuning of this feedback permits firing rate

stability along a continuum of rates. Climbing activity is produced

when positive feedback provides slightly more current than is

required for stability, continually tipping the balance toward

higher rates. The amount by which feedback current exceeds the

stabilizing current determines the slope of the climbing activity,

learned by plasticity at recurrent synapses in the model.

The models by Buonomano and colleagues [95,99] are based on

the premise that the encoding of time in the hundreds of

milliseconds range is an inherent property of local cortical circuits,

much like our model, but the mechanism by which they do so is

very different. Their models do not produce ascending or

descending activity, but rather, time is coded implicitly by network

state. The long time constants of short term synaptic facilitation

and depression in particular (up to *1s) allow the network to

reflect its recent history by its current state, which can be readout

downstream. This approach provides an elegant solution to the

challenge of recognizing rapidly-changing temporal patterns,

though it is not clear whether this mechanism could be used for

production of temporal estimates. Conversely, our model readily

estimates intervals, but is presumably ill-suited to rapid temporal

pattern recognition, required, for example, for understanding

speech and appreciating music. The synfire chain [118,119]

models by [93,120] offer another generic-network approach,

consistent with a distributed temporal coding framework. In these

models, time is coded by the duration of activity propagating

through the network, where output cells learn to fire at expected

times by synaptic plasticity. Such a timing mechanism could

conceivably recognize and produce interval estimates. The above

neural models are considered along these and other dimensions in

Table 2. See the table caption for further explanation. As a final

point on generic circuitry, it seems reasonable to expect a generic

mechanism to support multiple functions, such as our demonstra-

tion of timing and decision tasks, but we do not expect a single

mechanism to execute all possible tasks. While our biophysical

network model can be described as a basis function network [28],

it is not a universal function approximator [121,122].

A number of earlier models have demonstrated the scalar

property under different assumptions and mechanisms than our

model. In the accumulator network by [123], noisy firing by

linear spiking neurons is precisely balanced by random fan-out

connectivity, where the scalar property emerges from the

Gamma distribution of spiking activity. [124] investigated a

multi-cascade structure with multiple memoryless states, i.e. a

Markov Chain, proving that the system achieves optimal

reliability if each state is sequentially and irreversibly activated

and generates equal information. In the model by [125],

population climbing activity was modelled by an opponent

Poisson process, where the scalar property results from the

inverse Gaussian distribution of first passage times. The scalar

property was also derived in terms of the first passage problem

by [111], where in a fully recurrent network of bistable units,

the probability of transition from the ‘on’ state to the ‘off’ state

increases until network activity collapses. In the models by [57],

the scalar property results from the exponential distribution of

the transition from the ‘off’ state to the ‘on’ state of bistable

units, where the probability of transition is inversely propor-

tional to the duration of the interval being estimated. An

information-theoretic framework for classifying timing by a

stochastic process is provided by [126], where timing mecha-

nisms that are based on the mean, variance and correlation of

the process predict different characteristics of timing errors.

Table 2. A comparison of neural models of interval timing.

Model IL RA MS TG SP L

Reutimann et al. (2001) 2{8s up net yes no no

Durstewitz (2003) *0:1{10s up cel yes no yes

Miller et al. (2003) *5{10s both net yes no no

Kitano et al. (2003)

Model 1 (rec. net.) *0:5{2s down both no yes no

Model 2 (synf. ch.) *0:5{2s no no no no yes

Reutimann et al. (2004) 5{8s up net yes no yes

Karmarkar and Buonomano (2007) *0:1{0:5s no no no no yes

Okamoto et al. (2007) *1{4s both both no no no

Okamoto and Hass et al (2008) *0{1s no no no yes yes

Okamoto and Fukai (2009) *0:2{1:5s up both no yes yes

Gavornik et al. (2009) *0:5{2s down no yes no yes

Almeida and Ledberg (2010)

Model 2 (single cell) 1{10s up cel no yes yes

Model 3 (rec. net.) *1{10s up net no yes no

Our model *0:2{1:5s up net yes yes yes

A comparison of neural models of interval timing. In relation to our model, these models can be distinguished along dimensions including the interval length addressed
(IL); whether they show ramping activity, and if so, whether the ramp is ascending or descending (RA: up/down/both/no); whether they rely on multistable dynamics,
and if so, whether the mechanism is cellular or network-based (MS: cel/net/both/no); whether neural activity shows a true gradient or an average of binary states (TG:
yes/no); whether the scalar property of interval timing was shown: (SP: yes/no); and whether the learning of intervals was shown (L: yes/no).
doi:10.1371/journal.pcbi.1003021.t002
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In our model, the interval estimation process is the evolution of

network activity to the threshold from an initial state close to the

unstable flat steady state. Stronger NMDAR conductance leads to

a smaller difference between the initial state and the threshold (see

Table 1) and to a larger positive eigenvalue of the unstable flat

steady state, producing shorter interval estimates. During the

evolution from the initial state to the threshold, noise causes the

system to fluctuate around a mean trajectory, where higher levels

of noise cause a greater deviation. If the level of noise is

independent of the synaptic conductance strength, the deviation

will be greater with longer evolution times, so longer estimates will

be more variable. Our analysis in Section The scalar property of

interval timing reveals Weber’s law as a necessary property of any

timing mechanism that can be expressed as a 1-dimensional OU

process with positive drift coefficient (Equation 20), given three

constraints: (1) the timing threshold is reduced with increasing

feedback excitation, (2) feedback excitation is linear, and (3) the

noise in the system is independent of feedback excitation. The first

constraint follows from the dominance of NMDARs in local-

circuit processing, ie. the state variable of the reduced system is

NMDAR activation, which varies much less with increasing

NMDAR conductance than the resulting firing rates. Therefore,

with increasing conductance, reducing the timing threshold for

NMDAR activation preserves the fixed firing threshold in the

timing network. The second constraint is common to many

analytic reductions of neural models (e.g. [127,128]). The third

constraint can be justified by the long time constant of decay of

NMDARs, which allows NMDAR activation to filter synaptic

noise at intrinsic synapses, i.e. noisy synaptic release is overcome by

residual activation.

Dopamine as a potential mechanism for scaling NMDARs
in cortical timing circuitry

The timing network estimates different intervals by the scaling

of NMDAR conductance strength by cNMDA, controlling the

network’s dynamics. Because the strength of cortical NMDAR

currents are modulated by dopamine (DA) [59], it is possible that

cNMDA could be instantiated by DA. Further evidence in support

of this possibility comes from studies of working memory and

interval timing. Working memory, or the active retention of

information for use in cognitive tasks, is correlated with persistent

mnemonic activity in a number of cortical regions and experi-

mental conditions ([129,130]). It is widely believed that persistent

mnemonic activity is supported by recurrent synaptic processing,

where the long time constant of NMDARs is hypothesized to

provide an excitatory plateau [131,132] and to limit network

oscillations [133,134]. This hypothesis is supported by studies

showing that NMDAR antagonists abolish cortical up-states in

vitro and impair working memory performance [135]. DA

antagonists also impair working memory performance and DA is

elevated in PFC during working memory tasks [60,136]. This

convergence of evidence has lead to the hypothesis that NMDAR

modulation by DA is a crucial factor in controlling attractor

dynamics in the service of working memory (see [135]). Our model

makes use of the same computational principles, so the possible

relationship between cNMDA and DA is a compelling one, further

supported by the common occurrence of climbing activity during

delay periods of working memory tasks (see Discussion section

Prospective and retrospective coding).

DA is also extensively correlated with interval timing in the

seconds to minutes range [13,137]. In this regard, DA agonists and

antagonists are correlated with underestimates and overestimates

of intervals respectively (see [114]). Similarly, high and low values

of cNMDA produced short and long interval estimates respectively

in our model. Our results therefore suggest that in cortical timing

circuitry, DA may strengthen attractor dynamics sufficiently to

destablize background states. If so, the slope of climbing activity

could be modulated by tonic DA, possibly by the increasing

occupancy of D1 receptors due to slow extrasynaptic uptake

[138,139], consistent with enhancement of NMDAR currents via

D1 activation [59]. Further work is required to address this

possibility. For instance, in addition to modulating NMDAR

currents, DA modulates cortical GABAR currents [60], so a more

detailed model of DA modulation is required. Furthermore, in the

majority of experiments revealing DA involvement in timing in the

seconds to minutes range, the effect of DA has been via D2

receptors (see [13,114]), which act in a largely antagonistic way to

D1 receptors [60].

Overall, it is unclear whether DA agonists (antagonists) should

be expected to speed up (slow down) the representation of time in

the hundreds of milliseconds range, but there are notable gaps in

the literature that reveal important lines of enquiry. Firstly, the

role of D1 and D2 receptors in timing in the seconds to minutes

range appears to be task dependent, as a number of recent studies

have shown evidence for D1 involvement in timing in this range,

using tasks that were not used in earlier studies showing D2

involvement (e.g. [140–143]). Additionally, several studies showing

D2 involvement in earlier tasks also showed D1 involvement (e.g.

[144,145]). Secondly, despite the large body of work addressing

D1 and D2 involvement in seconds-to-minutes timing in non-

human animals, we are unaware of any such studies investigating

the hundreds of milliseconds range (see [146]). Thirdly, despite a

growing body of work addressing D2 involvement in timing in

healthy humans (see below for studies with clinical populations),

we are unaware of any studies to address D1 involvement.

Studies have also shown timing deficits in the seconds to

minutes range among patients with Parkinson’s Disease ([13,100]),

a pathology characterized by a deterioration of dopaminergic

activity [147]. Fewer such studies have considered timing in the

hundreds of milliseconds range and results have been mixed

among those that have [148–150]. Finally, we note that studies

addressing the role of DA in interval timing have focused on its

effect in the striatum (see [100]). Suffice to say, in addition to their

striatal projections, dopaminergic neurons in the basal ganglia

project extensively and diffusely to cortex ([151]), so these timing

hypotheses are by no means incompatible with our model of local-

circuit cortical timing.

The SAT and an active role for time in decision
processing

There has long been an appreciation of the role of time in

decision making, where it has been viewed as a medium for

filtering noise (see [6] for a historical and mathematical treatment).

In sequential sampling models, evidence for each option of a

decision is integrated until the accumulated evidence for one of the

options reaches a threshold level, at which time the decision is

made in favour of that option (see [2]). Because the evidence may

be ambiguous and neural processing is noisy, temporal integration

provides an average of the evidence, so decisions are not made on

the basis of momentary fluctuations. The more time spent

integrating, the better the average and the greater the probability

of an accurate decision (see [4]). Clearly, speed and accuracy

impose conflicting demands within this framework, the reconcil-

iation of which defines the SAT.

In two-choice decision tasks, integrating the difference between

the evidence for each option (the decision variable) implements a

class of algorithm known as the drift diffusion model (DDM),

known to yield the fastest decisions for a given level of accuracy

Trading Speed and Accuracy by Coding Time
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and the most accurate decisions for a given decision time [6]. The

DDM thus optimizes speed and accuracy with respect to one

another. This approach accounts for a huge volume of experi-

mental data from decision making experiments (see [3]) and under

reasonable biophysical constraints, is formally equivalent to

models in which neural populations selective for each of two

decision options compete via mutual inhibition [128]. Intrinsic

synapses support temporal integration in these models

[30,31,127].

The SAT can be be achieved within this framework by raising

and lowering the decision threshold, an approach that readily

accounts for behavioural data from decision making tasks (see

[5,6]), but conflicts with neural data showing decision-correlated

neural activity that is approximately constant at the time of a

decision [9,97,152]. A similar mechanism that is potentially

consistent with these data is the adjustment of the initial level of

neural activity on which the decision variable builds, a possibility

that is supported by recent functional magnetic resonance imaging

(fMRI) studies [153,154]. Such a mechanism requires a means to

control the baseline level of activation in decision circuitry, but this

requirement could be satisfied by spatially non-selective input,

potentially instantiated by the persistent encoding of task

requirements in PFC (see [155]). Neural models have demonstrat-

ed the SAT under this approach [24,128]. Another potential

means of trading speed and accuracy with a fixed neural threshold

is the adjustment of the strength of synapses onto downstream

neurons reading out or implementing the decision [156]. It is not

clear, however, that the timescale of plasticity processes is

consistent with the rapidity with which experimental subjects

trade speed and accuracy from trial to trial [24].

An alternative, compatible mechanism is that decision-makers

explicitly encode their temporal constraints, controlling the SAT

downstream (Figures 10 and 11). Several recent studies have

considered such an active role for the representation of time in

decision making. For example, the DDM has been augmented

with time-dependent mechanisms [8,10]. The fundamental

difference between these and earlier diffusion models is that

the representation of elapsed time has an increasing influence

on decision processing as each trial progresses, sometimes

referred to as an ‘urgency’ signal. In the time-variant DDM by

[157], amplifying the input by a growing temporal signal was

shown to earn more reward per unit time than the standard

DDM. This approach is functionally equivalent to lowering the

decision threshold over the course of each trial, where later

evidence is more heavily weighted than earlier evidence at the

expense of a decreasing signal-to-noise ratio [8]. Conversely, if

the incoming evidence and the evolving decision variable are

both amplified by the temporal signal, there is a transition from

a heavier weighting of the former to the latter [11], similar to

the transition from extrinsic to intrinsic processing hypothesized

to underlie local-circuit cortical processing (see [29]). We

hypothesize that climbing activity drives the rate of this

transition in downstream decision circuitry, controlling the

SAT. This hypothesis is consistent with neural data from

experimental tasks with a timing requirement on the relevant

order for perceptual decisions (see the previous section) and with

neural and behavioural data revealing the SAT (see [5]). It is

also consistent with neural data showing a fixed decision

threshold [9,97,152]. Indeed, at least one experiment has

reported climbing activity that was correlated with the time of

decisions in a perceptual task, but not with the evidence [9].

Such activity effectively encodes elapsed time relative to an

estimated interval [32], shown recently to earn more reward per

unit time than a persistent, top-down signal in a more abstract

network model than the one used here, where the temporal

signal was a linear function of time [11].

A transition through dynamic regimes during

decisions. We have previously described the dynamics of the

decision network within this framework, where a linear ramping

signal was shown to drive a transition from a leakage-dominated

regime to an inhibition-dominated regime in a simplified version

of the decision network used here [11]. In the leakage regime, the

network quickly reaches a steady state where the decision variable

leaks away at the same rate as it accumulates, whereas in the

inhibition regime, the decision variable is amplified by strong

recurrent dynamics, rapidly driving the network toward an

attractor corresponding to the target or the distractor, i.e. activity

in one population inhibits activity in the other. In either extreme

case, the effective time constant of the network is short and

therefore unsuitable for temporal integration. However, gain

modulation by the evolving timing signal gradually stretches the

time constant prior to the bifurcation between regimes, facilitating

a progression through processing stages that correspond to noise

filtering, integration of evidence, amplification of integrated

evidence, and choice selection. Effectively, the network imple-

ments late amplification of a high quality decision variable,

accrued by early conservatism. The rate at which the timing signal

ramps up determines the rate of the progression. Since the

network always goes through the same stages, decision-selective

firing rates are fixed at decision time, consistent with neural data

[9,97,152]. The SAT is thus achieved by estimating elapsed time

relative to a deadline. Under accuracy (speed) conditions, the

decision network spends more (less) time in regimes with a longer

(shorter) time constant, integrating more (less) evidence at the

expense of speed (accuracy). Here, the timing network provides the

temporal signal by virtue of its unstable background state,

implementing gain modulation by spatially non-selective, additive

input [33] (Figure 1C). This time-dependent approach leads to

more accurate decisions per unit time than the modulation of

decision dynamics by a time-independent signal because at the

time of the bifurcation, the state of the decision network is closer to

the attractor corresponding to the target than to the attractor

corresponding to the distractor. We confirmed this analysis for the

present, biophysically motivated model by running decision trials

without the timing network for a range of values of cNMDA in the

decision network, where these values spanned slow and fast

decision times. Without the timing network, the decision network

systematically earned less reward than the coupled-circuit model,

according to the reward rate definitions of [158] and [6] (not

shown).

The weighting of evidence during decisions. The dynam-

ics of the decision network under time-variant gain modulation

lead to a testable prediction about the weighting of evidence at

different times during decisions. This prediction differs from those

of earlier time-invariant approaches to the SAT [5,24]. As described

above (see The SAT and an active role for time in decision processing),

neural models in which stimulus-selective populations compete via

mutual inhibition can be approximated by the DDM [128]. These

models (including ours) are based on the premise that intrinsic

(recurrent) synapses underlie the buildup of evidence [30], so the

decision variable accumulates not only by the sequential sampling

of instantaneous evidence, but also by a factor of its present value

at each instant in time. These models are thus equivalent to a 1-

dimensional OU diffusion process

dx

dt
~Azlxzsj, ð28Þ
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where x is the decision variable, A is the drift (here the mean

difference between the target and distractor signals), sj is white

noise with standard deviation s, and l scales the present value of

the decision variable. The difference between our model and

earlier neural models of the SAT can be described in terms of l.

As described in [128], l equals 0 in the standard DDM, so

Equation 28 reduces to a Wiener diffusion process. With negative

l, the model is dominated by leakage and converges to a stable fix

point with mean {A=l. With positive l, the fix point is unstable

and x is repelled from it at a rate that depends on x (faster for

larger DxD). The neural model in [24] trades speed and accuracy by

the modulation of network dynamics by a constant, spatially non-

selective signal during each trial, i.e. the signal ‘locks in’ the

dynamics for a given trial, equivalent to adjusting l between trials

in Equation 28. Under this approach, evidence is equally weighted

over the full trial for l~0. Negative l produces a recency effect,

where later evidence has greater weight than earlier evidence

because the latter has more time to leak away. Positive l produces

a primacy effect, where earlier evidence has more weight than

later evidence because the former is amplified for longer. See [127]

for further discussion of these principles. In a task in which the

mean evidence changes systematically within each trial (e.g.

[10,159]), time-invariant models can either predict a recency

effect, a primacy effect, or uniform weighting of evidence.

Expressing our model according to Equation 28 requires that l
be time-dependent, so our model becomes x~(Azl(t)x)dtzsj,

where l(t) increases monotonically from a negative value to a

positive value as the temporal estimate evolves within each trial.

Under this approach, evidence is most heavily weighted during the

transition from negative to positive l, i.e. in the middle of the trial

[11]. These different predictions could be tested by briefly

changing the mean evidence favouring the target and distractor

at different times during a decision trial.

Summary, conclusions and future work
Despite the longstanding attribution of a prominent role for

time in perceptual decisions and the growing appreciation of the

role of temporal codes in behaviour more generally, few studies

have considered the interactions between spatial and temporal

codes in decision making. The SAT provides a potential window

into these interactions, but most theories of the SAT have ignored

the encoding of time, with other factors limiting the amount of

time spent integrating evidence (see [5]). We hypothesize a

compatible mechanism: the SAT can be accomplished by

estimating one’s temporal constraints (Figures 10 and 11), where

climbing activity encodes these estimates (Figures 2 and 6) and

controls the SAT by gain modulation (Figures 10 and 11). This

hypothesis is consistent with a growing body of neural data from

tasks with a timing requirement (see above) and with the notion of

urgency in decision tasks [9,10]. Our implementation of the same

network for timing and decision making is consistent with the

network’s foundations as a generic, local-circuit cortical model

[27–29] and with a framework of distributed, generic cortical

timing circuitry [12]. In this regard, we have demonstrated a

plausible framework for spatiotemporal integration in cortex: the

modulation of spatially selective, temporally non-selective process-

ing by temporally selective, spatially non-selective processing.

While the present implementation of this framework is uni-

directional, the mutual (bidirectional) influence of spatial and

temporal codes is an interesting future direction.

The variability of decision times in perceptual tasks has been an

important means of characterizing decision processing (see [2,77]).

Our study suggests that the encoding of temporal constraints is an

important source of this variability. Despite the large body of work

characterizing the variability of temporal estimates on the relevant

order and the broad range of variability across these different

experimental paradigms (see [55]), we are unaware of any studies

that have systematically controlled timing variability in a given

task, except by varying the length of the intervals being estimated.

Our study suggests that such an approach would not only help to

characterize the mechanisms underlying temporal coding, but

would further characterize decision making and its relationship

with time. In recent years, there has been growing interest in the

optimality of decisions in terms of reward-maximization [6,156–

158] and a compelling possibility is that decision makers maximize

reward rate by estimating their deadlines [11]. It is conceivable

that estimates of deadlines imposed by the environment will vary

differently than self-imposed deadlines on the same temporal

order, a possibility that could be addressed by controlling the time

available to respond and the timing of reward in decision tasks.

Future work should address this possibility.
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