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Abstract

The role of weight on the weighted networks is investigated by studying the ef-

fect of weight on community structures. We use weighted modularity Qw to evaluate

the partitions and Weighted Extremal Optimization algorithm to detect communities.

Starting from idealized and empirical weighted networks, the distribution or matching

between weights and edges are disturbed. Using dissimilarity function D to distin-

guish the difference between community structures, it is found that the redistribution

of weights does strongly affect the community structure especially in dense networks.

This indicates that the community structure in networks is a suitable property to reflect

the role of weight.
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1 Introduction

Link Weights, as strength of the interaction represented by networks, are believed to be
an important variable in networks. It gives more information about networks besides its
topology properties dominated by links. Recently more and more study in complex networks
focus on the weighted networks. The problems involve the definition of weight and other
quantities which characterize the weighted networks[1, 2, 3], the empirical studies of its
statistical properties[4, 5, 6, 7], evolving models[8, 9, 10, 11, 12, 13], and transportation or
other dynamics on weighted networks[14, 15, 16, 17].

However, how important is the weight, or what significant changes on network structures
are induced when weight is changed? This, we call, the role of weight, should be a funda-
mental question in the study of weighted networks. But it has not been investigated deeply
in the previous studies.
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The role of weight should be first investigated by analyzing the correlation between edge
weight and other properties. In this way, it attempt to answer the question that if there is
some internal mechanism strongly determining weights. For example, one may image the
edge betweenness effects edge weight largely because the larger edge betweenness implies
the edge has the more important role in communication on networks so that the weight
on the edge might be also larger. If this is true, the weight should be less important for
the networks because the weight is dependent on links or the weight is determined by the
network topology.

For the database of our scientific collaboration networks of econophysicists, BNU-email
network, and monkey’s societies, based on the standard method for linear correlation analysis
in mathematical statistics, we get the correlation results for the edge weights and edge
betweenness, the edge weight and the sum of degrees of its two ends vertices. The results
are shown in Table 1. All the coefficients of correlation for links are less than 0.25. These
negative results reveal that the weight is really an independent variable for complex networks.
By the way, we also get the correlation coefficients for the vertex weight (strength of vertex)
and its degree. They are 0.79, 0.44. and 0.71 for our above three networks. The results are
rational because they are all contributed by the connected links.

Table 1. Correlation coefficients for weight and other quantities

EP-SCN BNU-Email Monkey
Weight-Betweenness 0.0055 0.028 0.19Links
Weight-Degree of ends 0.226 0.028 0.14

Vertices Strength-Degree 0.79 0.44 0.71

From the above negative conclusion on correlation analysis, we know the weight is an
independent variable at some level. This even makes the work on the role of weight more
attractive: since it’s somehow independent, how significant is it?

The effects of weight on the network structures can be investigated on two classes of
properties: single vertex statistics and correlation statistics. The former includes vertex
based properties such as degree, clustering coefficient, and the later includes global properties
such as distance, betweenness and especially community structure. Except we consider the
difference of above properties between unweighted and weighted networks, an important
way to study the effects of weight is to consider their difference after we disturb the weight
distribution. A natural way to disturb weights is to redistribute weights onto different
edges[7], where we either change the distribution of weight or mix the matching between
weights and edges. However, our previous investigation shows that this redistribution has
little effect on the single vertex statistics, neither significant effect on distance. This negative
conclusion looks like weight does not have significant effect on network structures. However,
we strongly suspect that it’s only because we have not found the proper measurement to
present its effect.

An analogy between networks and condensed matter may give us some clues for insightful
investigation. In condensed matter, at most cases, an effective single electron picture is well
enough for a large number of phenomena. An effective field is used to represent effect from
all electrons and lattice ions in condensed matter. However, there are something beyond this
single particle scheme so that it requires to consider the correlation between electrons. Single
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vertex statistics naturally belong to the former class, even possible including some global
properties such as distance. But community structure measures directly the correlation
among vertices. Therefore, in this work, we use the community structure as a measurement
on the role of weight.

In binary networks, the community structure is defined as groups of network vertices,
within groups there are dense internal links among nodes, but between groups nodes loosely
connected to the rest of the network[18]. However, as we have mentioned above, link weight
is an independent variable and should have some important effects on structure and function
of networks. As for community structures, the definition of the community must integrate
links with link weights. Newman has generalized the modularity Q to weighted modularity
Qw for evaluation the partitions of weighted networks[2]:

Qw =
1

2w

∑

ij

[wij −
wiwj

2w
]δ(ci, cj), (1)

It takes both links and link weights into account. Usually, groups separated with the link
weights should be different from the result based only on topological linkage. Given the same
topological structure, different assignments of link weights may result in different community
structures. Our basic question is how will the community structure change when the weights
are disturbed.

There are several questions should be answered before the realization of the above ideas.
First, what are the networks for this investigation. Our previous analysis uses networks of
Econophysicists as our typical networks[3]. Recently, we have got more datas on BNU-email
networks and monkey’s societies[2, 19]. Hopefully, dense weighted networks will give us
more confirmative conclusions. Besides these real networks, we can also construct idealized
ad hoc weighted networks for our investigation. Second, how to extract and to evaluate
community structure from a given network. Currently, there are several typical algorithms
in the literature: Hierarchical Clustering, betweenness based GN algorithm[20], Potts model
based algorithm[24], Extremal Optimization algorithm[21], and so on. We have generalized
several approaches to weighted networks and investigated their performance[22]. Here, we
use only Weighted Extremal Optimization (WEO) algorithm. The approach of WEO is
directly related with the definition of weighted modularity Qw. It performs well in weighted
networks. Then the third, how to compare different community structures among the same
set of vertices. We have proposed dissimilarity function D in [19] to measure the difference
between partitions. Starting from two community structures {A1, A2, . . .} and {B1, B2, . . .}
over the same set N , first, we need to identify the correspondence between As and Bs and
re-order them. Then second, for each pair after re-ordered, the dissimilarity of Aj and Bj

is given by:

dj =

∣

∣

(

Aj ∩ B̄j

)

∪
(

Āj ∩Bj

)∣

∣

|Aj ∪Bj |
. (2)

And the total dissimilarity can be calculated as

D =

∑K

i=1 di

K
. (3)

Here, we use the dissimilarity function D to quantify the difference of different communities.
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The paper is organized as following. The correlation between edge weight and between-
ness, and other properties has been studied in Section 1. The negative results demonstrate
that the weight is an independent variable. Then in Section 2, we compared community
structures of weighted and corresponding unweighted, disturbed weighted networks. The re-
sults demonstrate that the weight has effects on communities, especially in dense networks.
In Section 3, in order to show more results about the effects of weight on communities, we
investigated idealized ad hoc weighted networks in detail. The results give us systematic
view about the effects of weight on community structures. Finally we give some conclusion
remarks.

2 Community structures in Real and Unweighted, In-

verse Weighted Networks

In this section, we focus on the effect of weight on community structure in real weighted net-
works by comparing the communities of real and its binary correspondence, and also inverse
weighted networks. Real networks include Econophysicists collaboration network[3], BNU-
email network and Rhesus monkey network[2]. For detecting and comparing community
structure, we take the largest connected cluster of the above networks. For the Econophysi-
cists collaboration network, it includes 271 nodes and 371 edges. In order to distinguish the
network with different proportion of possible links, we define the denseness of network as the
ratio of existing links to the all possible links among the nodes. The denseness for Econo-
physicists collaboration network is 0.01. The database for BNU-Email network includes the
times of Emails between any two mailboxes (*@bnu.edu.cn) in a week. The network includes
740 nodes and 1400 links. We also use its largest cluster, which includes 620 nodes and 1117
links. The denseness of BNU-Email network is 0.006. The monkey network include 16 nodes
and 69 edges. It is a connected network with denseness equals 0.575. So it is a relatively
dense network.

As mentioned in the introduction, besides considering the difference of suitable properties
between unweighted and weighted networks, an important way to investigate the effects of
weight is to study the impaction of weight redistribution to the network properties. We have
introduced the way to re-assign weights onto edges with p = 1,−1 for weighted networks [7].
Set p = 1 represents the original weighted network given by the ordered series of weights
which gives the relation between weight and edge but in a decreasing order,

W (p = 1) =
(

wi1j1 = w1 ≥ wi2j2 = w2 ≥ · · · ≥ w(iL)(jL) = wL
)

. (4)

p = −1 is defined as the inverse order as

W (p = −1) =
(

wi1j1 = wL ≤ · · · ≤ w(iL−1)(jL−1) = w2 ≤ w(iL)(jL) = w1
)

, (5)

Here we only compare the community structures of original and inverse weighted networks.

We apply WEO algorithm 20 times for each network. Then the community structure is
shown by the corresponding co-appearance matrix. Matrix ordering taken from a realization
of WEO algorithm in original network. In order to show the difference between groups of
original and unweighted, inverse weighted networks, we keep the same order as the original
one in the co-appearance matrix of the unweighted and inverse weighted networks. Each
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Figure 1: The normalized and colored co-appearance matrix for (a) original and (b) corre-
sponding binary, and (c) inverse weighted Econophysicists collaboration networks.
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Figure 2: The normalized and colored co-appearance matrix for (a) original and (b) corre-
sponding binary, (c) inverse weighted BNU-email networks.

matrix gives the fraction of nodes classified in the same partition over 20 realizations of WEO
algorithm. The color of the position (i, j) corresponds to the fraction of times that nodes i
and j belong to the same group. Then the final communities are given by the most probable
partitions. The difference between any pair of partitions is given by the dissimilarity function
D. In table 2, we show the comparison of the communities which formed in original and
unweighted and inverse weighted networks (with p = 1,−1 respectively).

Table 2. Dissimilarities between communities of original and binary, inverse weighted
networks

EP-SCN BNU-Email Monkey
D(Original-Binary) 0.37 0.58 0.67
D(Original-Inverse) 0.46 0.69 0.75

As shown in the figures and Table 2, link weights indeed affect the community structure
which is related to the global structure of networks. There are dissimilarities between
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Figure 3: The normalized and colored co-appearance matrix for (a) original and (b) cor-
responding binary, (c) inverse weighted monkey networks. The precision of the algorithm
for original and binary, inverse weighted networks are 1.00, 0.80, and 0.83 respectively. The
dissimilarity of the results are much larger than the other two networks. It seems that weight
plays more important role in dense networks.

partitions of weighted and its binary correspondence networks, especially for Rhesus monkey
network. It seems that weight has more important effects on dense networks.

The WEO algorithm can only give us best partition of the network. Using GN algorithm,
we can compare the process of dividing networks in to groups. Fig. 4 shows the dissimilarity
between the results of original and binary, inverse weighted networks. It could be found that
the dissimilarity usually has the larger value when the division of networks has gone into
the inner structure of the community. That also indicates the weight has bigger influence
in denser networks.

3 Results on Idealized Weighted Networks

Inspired by the above empirical studies, we constructed more idealized ad hoc weighted
networks and try to get more systematic conclusions about the effects of weight.

The idealized networks is firstly introduced by Newman and used by many other authors[26,
23]. Each network consists of n = 128 vertices divided into four groups of 32 nodes. Vertices
are assigned to groups and are randomly connected to vertices of the same group by an
average of 〈kintra〉 links and to vertices of different groups by an average of 〈kinter〉 links.
The average degree of all vertices are fixed, namely 〈kintra〉 + 〈kinter〉 = 16. With 〈kintra〉
increasing from small, the communities become more and more diffuse, and it becomes more
and more difficult to detect the communities. For a given network topology, here we assign
similarity weight to each link. The intragroup link weight is assigned as wintra, while the
intergroup link weight is assigned as winter . In practise, the relationship among the nodes
in groups is usually much closer than the relationship between groups. So winter is normally
less than wintra. Similarly with 〈kintra〉+ 〈kinter〉 = 16, we require

〈wintra〉+ 〈winter〉 = 2. (6)
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Figure 4: A: The dissimilarity of communities gotten by GN algorithm for original and
binary, inverse weighted networks of (a)Econophysicists collaboration network, (b)BNU-
email network, and (c)Monkey network.
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Figure 5: The dissimilarity between groups found by WEO algorithm and the presumed
community structure. With the link weight assigned by the method described in the text,
weighted networks have larger spectrum of 〈kinter〉 than binary networks.

We use ad hoc networks with uniform distribution of link weights here. For a given
network topology with certain 〈kinter〉, weights are taken randomly from a 0.5 interval around
〈wintra〉 and 〈winter〉 respectively for intragroup connections and intergroup connections,
that is 〈wintra〉− 0.25, 〈wintra〉+0.25 and 〈winter〉− 0.25, 〈winter〉+0.25 respectively. In the
following simulations, we take 〈wintra〉=1.6 and so that 〈winter〉=0.4.

Now we exam the effects of weight on community structures based on idealized weighted
networks. First, we applied WEO method to the binary and weighted ad hoc networks.
The groups gotten by the algorithm are compared with the presumed communities with the
dissimilarity function D. We could found in Fig.5, with the increasing of 〈kinter〉, D increase
sharply when 〈kinter〉 is larger than 8 in binary networks. But in weighted networks, the
spectrum of 〈kinter〉 is much larger. Even when 〈kinter〉 is around 10, The network could
grouped correctly. For weighted networks, the community structure defined by weighted
modularity Qw integrate links with link weights. It shows that the weight has an important
effect on community structure.

Then we compared the community structure of weighted networks with the groups after
we inverse redistribute the link weight. The community structures are all gotten by WEO ap-
proach. The original idealized network is constructed with a given 〈kinter〉 and 〈wintra〉=1.5.
Then we redistribute the link weights inversely according to the method described in Section
2. Fig.6 shows the dissimilarity function D between the original groups and groups after
disturbing link weights. The results are the average of 20 network realizations and 10 runs
each. It is interesting to find that D is around 0 when 〈kinter〉 is small but it increases
gradually with the increasing of 〈kinter〉. When 〈kinter〉 is large enough, it almost reaches 1.
These results reveal that link and link weight are two factors that determine the structure of
networks. When topological linkage dominates the structure of networks, link weight plays
less important role in networks. On the other hand, in some networks, especially in dense
networks such as Rhesus monkey network, link weight is crucial to the network structures.
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Figure 6: The dissimilarity between groups in original networks and the groups with random
redistributed link weights. The communities are found by WEO algorithm. With the
increase of 〈kinter〉, link weights have more effects on community structures.

4 Concluding Remarks

In this paper, in order to investigate the role of weight, we pay much attention to the
influence of the weight to the results of community structures. Besides the idealized ad
hoc weighted networks, the econophysicist collaboration network, Rhesus monkey network,
and BNU-email network are analyzed by using the WEO algorithm. Using the dissimilarity
function D to measure the difference of two kinds of community structures, we investigate
the different results of partition for non-weighted, weighted, and inverse weighted networks.
It is found that weight do have influence on the formation of communities structure. That
means: 1, the weight do have important role to the network structures; 2, the community
structure is a suitable global properties to reflect the effect of weight. It has been also found
that the weight is more significant for dense networks. For a sparse network, the existence
or not of edges have bigger influence to community structure of networks than the weight.
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